Skip to main content

A sample test package

Project description

afl-ai-utils

rm -rf build dist 
python3 setup.py sdist bdist_wheel
twine upload --repository pypi dist/* 

Installation

    pip install afl-ai-utils

Usage

Slack Alerting

from afl_ai_utils.slack_alerts import send_slack_alert 
send_slack_alert(info_alert_slack_webhook_url=None, red_alert_slack_webhook_url=None, slack_red_alert_userids=None, payload=None, is_red_alert=False)

    """Send a Slack message to a channel via a webhook.

Args:
    info_alert_slack_webhook_url(str): Infor slack channel url
    red_alert_slack_webhook_url(str): red alert channel url
    slack_red_alert_userids (list): userid's to mention in slack for red alert notification
    payload (dict): Dictionary containing Slack message, i.e. {"text": "This is a test"}
    is_red_alert (bool): Full Slack webhook URL for your chosen channel.

Returns:
    HTTP response code, i.e. <Response [503]>
"""

BigQuery Dataframe to BigQuery and get result in Datafeame

    def dump_dataframe_to_bq_table(self, dataframe: pd.DataFrame, schema_cols_type: dict, table_id: str, mode: str):

    >>> from afl_ai_utils.bigquery_utils import BigQuery
    >>> bq = BigQuery("keys.json")
    >>> bq.write_insights_to_bq_table(dataframe=None, schema=None, table_id=None, mode=None)
    
    
    """Insert a dataframe to bigquery

    Args:
        dataframe(pandas dataframe): for dataframe to be dumped to bigquery
        schema(BigQuery.Schema ): ex:
        schema_cols_type: {"date_start":"date", "id": "integer", "name": "string"}
        table_id (list): table_id in which dataframe need to be inserted e.g project_id.dataset.table_name = table_id
        mode(str): To append or replace the table - e.g mode = "append"  or mode="replace"
    Returns:
        returns as success message with number of inserted rows and table name
    """

Execute any query to BigQuery

    def execute_query(self, query):

    >>> from afl_ai_utils.bigquery_utils import BigQuery
    >>> bq = BigQuery("keys.json")
    >>> df = bq.execute_query(query = "SELECT * FROM TABLE")
    
    
    """
    Args:
        query (query of any type SELECT/INSERT/DELETE ) 
    Returns:
        returns dataframe of execute query result
    """

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

afl-ai-utils-0.6.2.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

afl_ai_utils-0.6.2-py3-none-any.whl (22.2 kB view details)

Uploaded Python 3

File details

Details for the file afl-ai-utils-0.6.2.tar.gz.

File metadata

  • Download URL: afl-ai-utils-0.6.2.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for afl-ai-utils-0.6.2.tar.gz
Algorithm Hash digest
SHA256 be24eb4fe198f83391b48747a0444373597be98495ee225a31e05ba17c779ada
MD5 5f1180ed3b8393ab6529038b3f6d94be
BLAKE2b-256 fbf4060951cf4bdb66708b70a30c8b56ed1281d08b456fe9ba291eb6b0bc6045

See more details on using hashes here.

File details

Details for the file afl_ai_utils-0.6.2-py3-none-any.whl.

File metadata

File hashes

Hashes for afl_ai_utils-0.6.2-py3-none-any.whl
Algorithm Hash digest
SHA256 befad4f66d1327a36704b8f1c0215ba7b9c884209e681b4c67d0860f67ebe214
MD5 431a42911bee63dda7f79d82c0f994d7
BLAKE2b-256 2f2f431277b0d5af6f45b646beab052ff6fe437bb559727f18c88984c5ef290f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page