Skip to main content

A sample test package

Project description

afl-ai-utils

rm -rf build dist 
python3 setup.py sdist bdist_wheel
twine upload --repository pypi dist/* 

Installation

    pip install afl-ai-utils

Usage

Slack Alerting

from afl_ai_utils.slack_alerts import send_slack_alert 
send_slack_alert(info_alert_slack_webhook_url=None, red_alert_slack_webhook_url=None, slack_red_alert_userids=None, payload=None, is_red_alert=False)

    """Send a Slack message to a channel via a webhook.

Args:
    info_alert_slack_webhook_url(str): Infor slack channel url
    red_alert_slack_webhook_url(str): red alert channel url
    slack_red_alert_userids (list): userid's to mention in slack for red alert notification
    payload (dict): Dictionary containing Slack message, i.e. {"text": "This is a test"}
    is_red_alert (bool): Full Slack webhook URL for your chosen channel.

Returns:
    HTTP response code, i.e. <Response [503]>
"""

BigQuery Dataframe to BigQuery and get result in Datafeame

    def dump_dataframe_to_bq_table(self, dataframe: pd.DataFrame, schema_cols_type: dict, table_id: str, mode: str):

    >>> from afl_ai_utils.bigquery_utils import BigQuery
    >>> bq = BigQuery("keys.json")
    >>> bq.write_insights_to_bq_table(dataframe=None, schema=None, table_id=None, mode=None)
    
    
    """Insert a dataframe to bigquery

    Args:
        dataframe(pandas dataframe): for dataframe to be dumped to bigquery
        schema(BigQuery.Schema ): ex:
        schema_cols_type: {"date_start":"date", "id": "integer", "name": "string"}
        table_id (list): table_id in which dataframe need to be inserted e.g project_id.dataset.table_name = table_id
        mode(str): To append or replace the table - e.g mode = "append"  or mode="replace"
    Returns:
        returns as success message with number of inserted rows and table name
    """

Execute any query to BigQuery

    def execute_query(self, query):

    >>> from afl_ai_utils.bigquery_utils import BigQuery
    >>> bq = BigQuery("keys.json")
    >>> df = bq.execute_query(query = "SELECT * FROM TABLE")
    
    
    """
    Args:
        query (query of any type SELECT/INSERT/DELETE ) 
    Returns:
        returns dataframe of execute query result
    """

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

afl-ai-utils-0.4.0.tar.gz (14.9 kB view details)

Uploaded Source

Built Distribution

afl_ai_utils-0.4.0-py3-none-any.whl (17.3 kB view details)

Uploaded Python 3

File details

Details for the file afl-ai-utils-0.4.0.tar.gz.

File metadata

  • Download URL: afl-ai-utils-0.4.0.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for afl-ai-utils-0.4.0.tar.gz
Algorithm Hash digest
SHA256 dfab462b4b24b273167e4c5ed2d4349c8486b1fc02a5e0e2d32d60c0a87b5d3b
MD5 27edcbd270906b7b19961b429bc05fbe
BLAKE2b-256 fd022da69629a3bc9ad8991ebbe41206fbb4d97784bda1182744088b393fa11c

See more details on using hashes here.

File details

Details for the file afl_ai_utils-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for afl_ai_utils-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ac86a1444ab4a429eeeec245df8a2f300d5105385147c139b2f3683bd2408f9c
MD5 d25c05eb2bbb7303b6c653ec64520d78
BLAKE2b-256 3ecf8d80fb3ad5916da891a1839297559ebacd4de2a262dd0e7c13960f741707

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page