Skip to main content

A sample test package

Project description

afl-ai-utils

rm -rf build dist 
python3 setup.py sdist bdist_wheel
twine upload --repository pypi dist/* 

Installation

    pip install afl-ai-utils

Usage

Slack Alerting

from afl_ai_utils.slack_alerts import send_slack_alert 
send_slack_alert(info_alert_slack_webhook_url=None, red_alert_slack_webhook_url=None, slack_red_alert_userids=None, payload=None, is_red_alert=False)

    """Send a Slack message to a channel via a webhook.

Args:
    info_alert_slack_webhook_url(str): Infor slack channel url
    red_alert_slack_webhook_url(str): red alert channel url
    slack_red_alert_userids (list): userid's to mention in slack for red alert notification
    payload (dict): Dictionary containing Slack message, i.e. {"text": "This is a test"}
    is_red_alert (bool): Full Slack webhook URL for your chosen channel.

Returns:
    HTTP response code, i.e. <Response [503]>
"""

BigQuery Dataframe to BigQuery and get result in Datafeame

    def dump_dataframe_to_bq_table(self, dataframe: pd.DataFrame, schema_cols_type: dict, table_id: str, mode: str):

    >>> from afl_ai_utils.bigquery_utils import BigQuery
    >>> bq = BigQuery("keys.json")
    >>> bq.write_insights_to_bq_table(dataframe=None, schema=None, table_id=None, mode=None)
    
    
    """Insert a dataframe to bigquery

    Args:
        dataframe(pandas dataframe): for dataframe to be dumped to bigquery
        schema(BigQuery.Schema ): ex:
        schema_cols_type: {"date_start":"date", "id": "integer", "name": "string"}
        table_id (list): table_id in which dataframe need to be inserted e.g project_id.dataset.table_name = table_id
        mode(str): To append or replace the table - e.g mode = "append"  or mode="replace"
    Returns:
        returns as success message with number of inserted rows and table name
    """

Execute any query to BigQuery

    def execute_query(self, query):

    >>> from afl_ai_utils.bigquery_utils import BigQuery
    >>> bq = BigQuery("keys.json")
    >>> df = bq.execute_query(query = "SELECT * FROM TABLE")
    
    
    """
    Args:
        query (query of any type SELECT/INSERT/DELETE ) 
    Returns:
        returns dataframe of execute query result
    """

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

afl-ai-utils-0.4.9.tar.gz (16.8 kB view details)

Uploaded Source

Built Distribution

afl_ai_utils-0.4.9-py3-none-any.whl (20.2 kB view details)

Uploaded Python 3

File details

Details for the file afl-ai-utils-0.4.9.tar.gz.

File metadata

  • Download URL: afl-ai-utils-0.4.9.tar.gz
  • Upload date:
  • Size: 16.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for afl-ai-utils-0.4.9.tar.gz
Algorithm Hash digest
SHA256 ac1027ef177f6b4c561118e2dc55943c17b5be387156f5f95bb36a74808c6a8f
MD5 0085c0b362d06479b7aeaf8b96559d80
BLAKE2b-256 22df5b23e0e1b42247a44d1864c30fb6cb5d412872009eab26bb0fd784a7d812

See more details on using hashes here.

File details

Details for the file afl_ai_utils-0.4.9-py3-none-any.whl.

File metadata

File hashes

Hashes for afl_ai_utils-0.4.9-py3-none-any.whl
Algorithm Hash digest
SHA256 2390d1a25a043495d8cf7e596f4bab72057c1a025cd26f0e5badd3e85b9135d7
MD5 36099ca3676cee5d760799e7ccf15cae
BLAKE2b-256 35a88eab1f629b3686242544fcb022bc072dc9899ea28ab2eaf789803c5be828

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page