Skip to main content

A sample test package

Project description

afl-ai-utils

rm -rf build dist 
python3 setup.py sdist bdist_wheel
twine upload --repository pypi dist/* 

Installation

    pip install afl-ai-utils

Usage

Slack Alerting

from afl_ai_utils.slack_alerts import send_slack_alert 
send_slack_alert(info_alert_slack_webhook_url=None, red_alert_slack_webhook_url=None, slack_red_alert_userids=None, payload=None, is_red_alert=False)

    """Send a Slack message to a channel via a webhook.

Args:
    info_alert_slack_webhook_url(str): Infor slack channel url
    red_alert_slack_webhook_url(str): red alert channel url
    slack_red_alert_userids (list): userid's to mention in slack for red alert notification
    payload (dict): Dictionary containing Slack message, i.e. {"text": "This is a test"}
    is_red_alert (bool): Full Slack webhook URL for your chosen channel.

Returns:
    HTTP response code, i.e. <Response [503]>
"""

BigQuery Dataframe to BigQuery and get result in Datafeame

    def dump_dataframe_to_bq_table(self, dataframe: pd.DataFrame, schema_cols_type: dict, table_id: str, mode: str):

    >>> from afl_ai_utils.bigquery_utils import BigQuery
    >>> bq = BigQuery("keys.json")
    >>> bq.write_insights_to_bq_table(dataframe=None, schema=None, table_id=None, mode=None)
    
    
    """Insert a dataframe to bigquery

    Args:
        dataframe(pandas dataframe): for dataframe to be dumped to bigquery
        schema(BigQuery.Schema ): ex:
        schema_cols_type: {"date_start":"date", "id": "integer", "name": "string"}
        table_id (list): table_id in which dataframe need to be inserted e.g project_id.dataset.table_name = table_id
        mode(str): To append or replace the table - e.g mode = "append"  or mode="replace"
    Returns:
        returns as success message with number of inserted rows and table name
    """

Execute any query to BigQuery

    def execute_query(self, query):

    >>> from afl_ai_utils.bigquery_utils import BigQuery
    >>> bq = BigQuery("keys.json")
    >>> df = bq.execute_query(query = "SELECT * FROM TABLE")
    
    
    """
    Args:
        query (query of any type SELECT/INSERT/DELETE ) 
    Returns:
        returns dataframe of execute query result
    """

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

afl-ai-utils-0.5.2.tar.gz (17.5 kB view details)

Uploaded Source

Built Distribution

afl_ai_utils-0.5.2-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file afl-ai-utils-0.5.2.tar.gz.

File metadata

  • Download URL: afl-ai-utils-0.5.2.tar.gz
  • Upload date:
  • Size: 17.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for afl-ai-utils-0.5.2.tar.gz
Algorithm Hash digest
SHA256 c7132539640dd3375c0ce00e6db616638be5ad97555ee5a93468f7fb3b5a8f3b
MD5 ac58350d9a818b0d5db520bf73fb9e39
BLAKE2b-256 c84b87554745ff5fd141055a5351741708d2fd38d509a140b9ddf77a637e9edc

See more details on using hashes here.

File details

Details for the file afl_ai_utils-0.5.2-py3-none-any.whl.

File metadata

File hashes

Hashes for afl_ai_utils-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d67284e8bba1ce419def2a5d9ef2b1ecec7cb57eb7a86a364f5a5e4df51d0980
MD5 ca6692f280c5c5d15804fd6177c01b1b
BLAKE2b-256 5eb411fdac20047cf8813f38f6d58bdbdceb2751913c2febf1de7e0c650895b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page