Skip to main content

A sample test package

Project description

afl-ai-utils

rm -rf build dist 
python3 setup.py sdist bdist_wheel
twine upload --repository pypi dist/* 

Installation

    pip install afl-ai-utils

Usage

Slack Alerting

from afl_ai_utils.slack_alerts import send_slack_alert 
send_slack_alert(info_alert_slack_webhook_url=None, red_alert_slack_webhook_url=None, slack_red_alert_userids=None, payload=None, is_red_alert=False)

    """Send a Slack message to a channel via a webhook.

Args:
    info_alert_slack_webhook_url(str): Infor slack channel url
    red_alert_slack_webhook_url(str): red alert channel url
    slack_red_alert_userids (list): userid's to mention in slack for red alert notification
    payload (dict): Dictionary containing Slack message, i.e. {"text": "This is a test"}
    is_red_alert (bool): Full Slack webhook URL for your chosen channel.

Returns:
    HTTP response code, i.e. <Response [503]>
"""

BigQuery Dataframe to BigQuery and get result in Datafeame

    def dump_dataframe_to_bq_table(self, dataframe: pd.DataFrame, schema_cols_type: dict, table_id: str, mode: str):

    >>> from afl_ai_utils.bigquery_utils import BigQuery
    >>> bq = BigQuery("keys.json")
    >>> bq.write_insights_to_bq_table(dataframe=None, schema=None, table_id=None, mode=None)
    
    
    """Insert a dataframe to bigquery

    Args:
        dataframe(pandas dataframe): for dataframe to be dumped to bigquery
        schema(BigQuery.Schema ): ex:
        schema_cols_type: {"date_start":"date", "id": "integer", "name": "string"}
        table_id (list): table_id in which dataframe need to be inserted e.g project_id.dataset.table_name = table_id
        mode(str): To append or replace the table - e.g mode = "append"  or mode="replace"
    Returns:
        returns as success message with number of inserted rows and table name
    """

Execute any query to BigQuery

    def execute_query(self, query):

    >>> from afl_ai_utils.bigquery_utils import BigQuery
    >>> bq = BigQuery("keys.json")
    >>> df = bq.execute_query(query = "SELECT * FROM TABLE")
    
    
    """
    Args:
        query (query of any type SELECT/INSERT/DELETE ) 
    Returns:
        returns dataframe of execute query result
    """

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

afl-ai-utils-0.5.9.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

afl_ai_utils-0.5.9-py3-none-any.whl (22.2 kB view details)

Uploaded Python 3

File details

Details for the file afl-ai-utils-0.5.9.tar.gz.

File metadata

  • Download URL: afl-ai-utils-0.5.9.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for afl-ai-utils-0.5.9.tar.gz
Algorithm Hash digest
SHA256 43b6e7ddc9cedd73662a3ee7b978da947e6ca4eb70d252b0375eb976af5c1c5c
MD5 1380fdf54d125c80ff3ec9295e9afc28
BLAKE2b-256 72267c0186d75733966d751f1a11a3613c6cf7d9ac1fd583cc61744d776343de

See more details on using hashes here.

File details

Details for the file afl_ai_utils-0.5.9-py3-none-any.whl.

File metadata

File hashes

Hashes for afl_ai_utils-0.5.9-py3-none-any.whl
Algorithm Hash digest
SHA256 6f92bdfb786dd2a8251fbfd7603293269a4667b2188e5ac112b073b8356e9241
MD5 f2a374950b06a28ffbd6ce4ebe5f26b4
BLAKE2b-256 c667df7e318ddc6de6f0245f771e5ef4e12359e73c84a62276dab4bbe26651d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page