Skip to main content

A sample test package

Project description

afl-ai-utils

rm -rf build dist 
python3 setup.py sdist bdist_wheel
twine upload --repository pypi dist/* 

Installation

    pip install afl-ai-utils

Usage

Slack Alerting

from afl_ai_utils.slack_alerts import send_slack_alert 
send_slack_alert(info_alert_slack_webhook_url=None, red_alert_slack_webhook_url=None, slack_red_alert_userids=None, payload=None, is_red_alert=False)

    """Send a Slack message to a channel via a webhook.

Args:
    info_alert_slack_webhook_url(str): Infor slack channel url
    red_alert_slack_webhook_url(str): red alert channel url
    slack_red_alert_userids (list): userid's to mention in slack for red alert notification
    payload (dict): Dictionary containing Slack message, i.e. {"text": "This is a test"}
    is_red_alert (bool): Full Slack webhook URL for your chosen channel.

Returns:
    HTTP response code, i.e. <Response [503]>
"""

BigQuery Dataframe to BigQuery and get result in Datafeame

    def dump_dataframe_to_bq_table(self, dataframe: pd.DataFrame, schema_cols_type: dict, table_id: str, mode: str):

    >>> from afl_ai_utils.bigquery_utils import BigQuery
    >>> bq = BigQuery("keys.json")
    >>> bq.write_insights_to_bq_table(dataframe=None, schema=None, table_id=None, mode=None)
    
    
    """Insert a dataframe to bigquery

    Args:
        dataframe(pandas dataframe): for dataframe to be dumped to bigquery
        schema(BigQuery.Schema ): ex:
        schema_cols_type: {"date_start":"date", "id": "integer", "name": "string"}
        table_id (list): table_id in which dataframe need to be inserted e.g project_id.dataset.table_name = table_id
        mode(str): To append or replace the table - e.g mode = "append"  or mode="replace"
    Returns:
        returns as success message with number of inserted rows and table name
    """

Execute any query to BigQuery

    def execute_query(self, query):

    >>> from afl_ai_utils.bigquery_utils import BigQuery
    >>> bq = BigQuery("keys.json")
    >>> df = bq.execute_query(query = "SELECT * FROM TABLE")
    
    
    """
    Args:
        query (query of any type SELECT/INSERT/DELETE ) 
    Returns:
        returns dataframe of execute query result
    """

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

afl-ai-utils-0.6.1.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

afl_ai_utils-0.6.1-py3-none-any.whl (22.2 kB view details)

Uploaded Python 3

File details

Details for the file afl-ai-utils-0.6.1.tar.gz.

File metadata

  • Download URL: afl-ai-utils-0.6.1.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for afl-ai-utils-0.6.1.tar.gz
Algorithm Hash digest
SHA256 d091fc05ced3818bc0be475b6c84b2ad2f1838e6ed37a467b315620e9e5c6a64
MD5 f5ceb708789edc58444a1b980fb44609
BLAKE2b-256 1ab436296d01b30556de9f77052f5eca7e07b12d15edf07a39154e7df8398ca9

See more details on using hashes here.

File details

Details for the file afl_ai_utils-0.6.1-py3-none-any.whl.

File metadata

File hashes

Hashes for afl_ai_utils-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 89317369dafa94ebf9a2cb2701f82e24286be2fe4350e4c0c2152798545a082c
MD5 cb3f27d94e1e169bf423dfe5179eb06b
BLAKE2b-256 5662763577dc792d78fcc486deed7b15b0a9f80072ce3285daaddae890d142f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page