Skip to main content

For AFS developer to access Datasource

Project description

AFS2-DataSource SDK

The AFS2-DataSource SDK package allows developers to easily access PostgreSQL, MongoDB, InfluxDB, S3 and APM.

Installation

Support Python version 3.6 or later

pip install afs2-datasource

Development

pip install -e .

Notice

AFS2-DataSource SDK uses asyncio package, and Jupyter kernel is also using asyncio and running an event loop, but these loops can't be nested. (https://github.com/jupyter/notebook/issues/3397)

If using AFS2-DataSource SDK in Jupyter Notebook, please add the following codes to resolve this issue:

!pip install nest_asyncio
import nest_asyncio
nest_asyncio.apply()

API

DBManager


Init DBManager

With Database Config

Import database config via Python.

from afs2datasource import DBManager, constant

# For MySQL
manager = DBManager(db_type=constant.DB_TYPE['MYSQL'],
  username=username,
  password=password,
  host=host,
  port=port,
  database=database,
  querySql="select {field} from {table}"
)

# For SQLServer
manager = DBManager(db_type=constant.DB_TYPE['SQLSERVER'],
  username=username,
  password=password,
  host=host,
  port=port,
  database=database,
  querySql="select {field} from {table}"  # only support `SELECT`
)

# For PostgreSQL
manager = DBManager(db_type=constant.DB_TYPE['POSTGRES'],
  username=username,
  password=password,
  host=host,
  port=port,
  database=database,
  querySql="select {field} from {schema}.{table}"
)

# For MongoDB
manager = DBManager(db_type=constant.DB_TYPE['MONGODB'],
  username=username,
  password=password,
  host=host,
  port=port,
  database=database,
  collection=collection,
  querySql="{}"
)

# For InfluxDB
manager = DBManager(db_type=constant.DB_TYPE['INFLUXDB'],
  username=username,
  password=password,
  host=host,
  port=port,
  database=database,
  querySql="select {field_key} from {measurement_name}"
)

# For Oracle Database
manager = DBManagerdb_type=constant.DB_TYPE['ORACLEDB'],
  username=username,
  password=password,
  host=host,
  port=port,
  database=database,
  querySql="select {field_key} from {measurement_name}" # only support `SELECT`
)

# For S3
manager = DBManager(db_type=constant.DB_TYPE['S3'],
  endpoint=endpoint,
  access_key=access_key,
  secret_key=secret_key,
  is_verify=False,
  buckets=[{
    'bucket': 'bucket_name',
    'blobs': {
      'files': ['file_name'],
      'folders': ['folder_name']
    }
  }]
)

# For AWS S3
manager = DBManager(db_type=constant.DB_TYPE['AWS'],
  access_key=access_key,
  secret_key=secret_key,
  buckets=[{
    'bucket': 'bucket_name',
    'blobs': {
      'files': ['file_name'],
      'folders': ['folder_name']
    }
  }]
)

# For APM
manager = DBManager(db_type=constant.DB_TYPE['APM'],
  username=username,  # sso username
  password=password,  # sso password
  apmUrl=apmUrl,
  apm_config=[{
    'name': name  # dataset name
    'machines': [{
      'id': machine_id  # node_id in APM
    }],
    'parameters': [
      parameter1,      # parameter in APM
      parameter2
    ]
  }],
  mongouri=mongouri,
  # timeRange or timeLast
  timeRange=[{'start': start_ts, 'end': end_ts}],
  timeLast={'lastDays': lastDay, 'lastHours': lastHour, 'lastMins': lastMin}
)

# For Azure Blob
manager = DBManager(db_type=constant.DB_TYPE['AZUREBLOB'],
  account_name=account_name,
  account_key=account_key,
  containers=[{
    'container': container_name,
    'blobs': {
      'files': ['file_name']
      'folders': ['folder_name']
    }
  }]
)

# For DataHub
manager = DBManager(db_type=constant.DB_TYPE['DATAHUB'],
  username=username,  # sso username
  password=password,  # sso password
  datahub_url=datahub_url,
  datahub_config=[{
    "name": "string", # dataset name
    "project_id": "project_id",
    "node_id": "node_id",
    "device_id": "device_id",
    "tags": [
      "tag_name"
    ]
  }],
  uri=mongouri, # mongouri or influxuri
  # timeRange or timeLast
  timeRange=[{'start': start_ts, 'end': end_ts}],
  timeLast={'lastDays': lastDay, 'lastHours': lastHour, 'lastMins': lastMin}
)
How to get APM machine id and parameters

How to get DataHub project id, node id, device id and tag


DBManager.connect()

Connect to MySQL, PostgreSQL, MongoDB, InfluxDB, S3, APM with specified by the given config.

manager.connect()

DBManager.disconnect()

Close the connection. Note S3 datasource not support this function.

manager.disconnect()

DBManager.is_connected()

Return if the connection is connected.

manager.is_connected()

DBManager.is_connecting()

Return if the connection is connecting.

manager.is_connecting()

DBManager.get_dbtype()

Return database type of the connection.

manager.get_dbtype()
# Return: str

DBManager.get_query()

Return query in the config.

manager.get_query()

# MySQL, Oracle Database
# Return type: String
"""
select {field} from {table} {condition}
"""

# PostgreSQL
# Return type: String
"""
select {field} from {schema}.{table}
"""

# MongoDB
# Return type: String
"""
{"{key}": {value}}
"""

# InfluxDB
# Return type: String
"""
select {field_key} from {measurement_name}
"""

# S3
# Return type: List
"""
[{
  'bucket': 'bucket_name',
  'blobs': {
    'files': ['file_name'],
    'folders': ['folder_name']
  }
}]
"""

# Azure Blob
# Return type: List
"""
[{
  'container': container_name,
  'blobs': {
    'files': ['file_name']
    'folders': ['folder_name']
  }
}]
"""

# APM
# Return type: Dict
"""
{
  'apm_config': [{
    'name': name  # dataset name
    'machines': [{
      'id': machine_id  # node_id in APM
    }],
    'parameters': [
      parameter1,      # parameter in APM
      parameter2
    ]
  }],
  'time_range': [{'start': start_ts, 'end': end_ts}],
  'time_last': {'lastDays': lastDay, 'lastHours': lastHour, 'lastMins': lastMin}
}
"""

# DataHub
# Return type: Dict
"""
{
  'config': [{
    "name": "string", # dataset name
    "project_id": "project_id",
    "node_id": "node_id",
    "device_id": "device_id",
    "tags": [
      "tag_name"
    ]
  }],
  'time_range': [{'start': start_ts, 'end': end_ts}],
  'time_last': {'lastDays': lastDay, 'lastHours': lastHour, 'lastMins': lastMin}
}
"""

DBManager.execute_query(querySql=None)

Return the result in MySQL, PostgreSQL, MongoDB or InfluxDB after executing the querySql in config or querySql parameter.

Download files which are specified in buckets in S3 config or containers in Azure Blob config, and return buckets and containers name of the array. If only download one csv file, then return dataframe.

Return dataframe of list which of Machine and Parameter in timeRange or timeLast from APM. Return dataframe of list which of Tag in timeRange or timeLast from DataHub.

# For MySQL, Postgres, MongoDB, InfluxDB, Oracle Database, APM and DataHub
df = manager.execute_query()
# Return type: DataFrame
"""
      Age  Cabin  Embarked      Fare  ...  Sex  Survived  Ticket_info  Title2
0    22.0    7.0       2.0    7.2500  ...  1.0       0.0          2.0     2.0
1    38.0    2.0       0.0   71.2833  ...  0.0       1.0         14.0     3.0
2    26.0    7.0       2.0    7.9250  ...  0.0       1.0         31.0     1.0
3    35.0    2.0       2.0   53.1000  ...  0.0       1.0         36.0     3.0
4    35.0    7.0       2.0    8.0500  ...  1.0       0.0         36.0     2.0
...
"""

# For Azure Blob
container_names = manager.execute_query()
# Return Array
# Return type: DataFrame
"""
['container1', 'container2']
"""
# or Return type: DataFrame
"""
      Age  Cabin  Embarked      Fare  ...  Sex  Survived  Ticket_info  Title2
0    22.0    7.0       2.0    7.2500  ...  1.0       0.0          2.0     2.0
1    38.0    2.0       0.0   71.2833  ...  0.0       1.0         14.0     3.0
2    26.0    7.0       2.0    7.9250  ...  0.0       1.0         31.0     1.0
3    35.0    2.0       2.0   53.1000  ...  0.0       1.0         36.0     3.0
4    35.0    7.0       2.0    8.0500  ...  1.0       0.0         36.0     2.0
...
"""


# For S3
bucket_names = manager.execute_query()
# Return Array
"""
['bucket1', 'bucket2']
"""
# or Return type: DataFrame
"""
      Age  Cabin  Embarked      Fare  ...  Sex  Survived  Ticket_info  Title2
0    22.0    7.0       2.0    7.2500  ...  1.0       0.0          2.0     2.0
1    38.0    2.0       0.0   71.2833  ...  0.0       1.0         14.0     3.0
2    26.0    7.0       2.0    7.9250  ...  0.0       1.0         31.0     1.0
3    35.0    2.0       2.0   53.1000  ...  0.0       1.0         36.0     3.0
4    35.0    7.0       2.0    8.0500  ...  1.0       0.0         36.0     2.0
...
"""

DBManager.create_table(table_name, columns=[])

Create table in database for MySQL, Postgres, MongoDB and InfluxDB. Noted, to create a new measurement in influxdb simply insert data into the measurement.

Create Bucket/Container in S3/Azure Blob.

Note: PostgreSQL table_name format schema.table

# For MySQL, Postgres, MongoDB and InfluxDB
table_name = 'titanic'
columns = [
  {'name': 'index', 'type': 'INTEGER', 'is_primary': True},
  {'name': 'survived', 'type': 'FLOAT', 'is_not_null': True},
  {'name': 'age', 'type': 'FLOAT'},
  {'name': 'embarked', 'type': 'INTEGER'}
]
manager.create_table(table_name=table_name, columns=columns)

# For S3
bucket_name = 'bucket'
manager.create_table(table_name=bucket_name)

# For Azure Blob
container_name = 'container'
manager.create_table(table_name=container_name)

DBManager.is_table_exist(table_name)

Return if the table exists in MySQL, Postgres, MongoDB or Influxdb.

Return if the bucket exists in S3.

Return if the container exists in Azure Blob.

# For Postgres, MongoDB and InfluxDB
table_name = 'titanic'
manager.is_table_exist(table_name=table_name)

# For S3
bucket_name = 'bucket'
manager.is_table_exist(table_name=bucket_name)

# For Azure blob
container_name = 'container'
manager.is_table_exist(table_name=container_name)

DBManager.is_file_exist(table_name, file_name)

Return if the file exists in the bucket in S3 & AWS S3.

Note this function only support S3 and AWS S3.

# For S3 & AWS S3
bucket_name = 'bucket'
file_name = 'test.csv
manager.is_file_exist(table_name=bucket_name, file_name=file_name)
# Return: Boolean

DBManager.insert(table_name, columns=[], records=[], source='', destination='')

Insert records into table in MySQL, Postgres, MongoDB or InfluxDB.

Upload file to S3 and Azure Blob.

# For MySQL, Postgres, MongoDB and InfluxDB
table_name = 'titanic'
columns = ['index', 'survived', 'age', 'embarked']
records = [
  [0, 1, 22.0, 7.0],
  [1, 1, 2.0, 0.0],
  [2, 0, 26.0, 7.0]
]
manager.insert(table_name=table_name, columns=columns, records=records)

# For S3
bucket_name = 'bucket'
source='test.csv' # local file path
destination='test_s3.csv' # the file path and name in s3
manager.insert(table_name=bucket_name, source=source, destination=destination)

# For Azure Blob
container_name = 'container'
source='test.csv' # local file path
destination='test_s3.csv' # the file path and name in Azure blob
manager.insert(table_name=container_name, source=source, destination=destination)

Use APM data source

  • Get Hist Raw data from SCADA Mongo data base
  • Required
    • username: APM SSO username
    • password: APM SSO password
    • mongouri: mongo data base uri
    • apmurl: APM api url
    • apm_config: APM config (type:Array)
      • name: dataset name
      • machines: APM machine list (type:Array)
        • id: APM machine Id
      • parameters: APM parameter name list (type:Array)
    • time range: Training date range
      • example:
      [{'start':'2019-05-01', 'end':'2019-05-31'}]
      
    • time last: Training date range
      • example:
      {'lastDays:' 1, 'lastHours': 2, 'lastMins': 3}
      

DBManager.delete_table(table_name)

Delete table in MySQL, Postgres, MongoDB or InfluxDB, and return if the table is deleted successfully.

Delete the bucket in S3 and return if the table is deleted successfully.

Delete the container in Azure Blob and return if the table is deleted successfully.

# For Postgres, MongoDB or InfluxDB
table_name = 'titanic'
is_success = manager.delete_table(table_name=table_name)
# Return: Boolean

# For S3
bucket_name = 'bucket'
is_success = manager.delete_table(table_name=bucket_name)
# Return: Boolean

# For Azure Blob
container_name = 'container'
is_success = manager.delete_table(table_name=container_name)
# Return: Boolean

DBManager.delete_record(table_name, file_name, condition)

Delete record with condition in table_name in MySQL, Postgres and MongoDB, and return if delete successfully.

Delete file in bucket in S3 and in container in Azure Blob, and return if the file is deleted successfully.

Note Influx not support this function.

# For MySQL, Postgres
table_name = 'titanic'
condition = 'passenger_id = 1'
is_success = manager.delete_record(table_name=table_name, condition=condition)
# Return: Boolean

# For MongoDB
table_name = 'titanic'
condition = {'passanger_id': 1}
is_success = manager.delete_record(table_name=table_name, condition=condition)
# Return: Boolean

# For S3
bucket_name = 'bucket'
file_name = 'data/titanic.csv'
is_success = manager.delete_record(table_name=bucket_name, file_name=file_name)
# Return: Boolean

# For Azure Blob
container_name = 'container'
file_name = 'data/titanic.csv'
is_success = manager.delete_record(table_name=container_name,file_name=file_name)
# Return: Boolean

Example

MongoDB Example

from afs2datasource import DBManager, constant

# Init DBManager
manager = DBManager(
 db_type=constant.DB_TYPE['MONGODB'],
 username={USERNAME},
 password={PASSWORD},
 host={HOST},
 port={PORT},
 database={DATABASE},
 collection={COLLECTION},
 querySql={QUERYSQL}
)

## Mongo query ISODate Example
QUERYSQL = "{\"ts\": {\"$lte\": ISODate(\"2020-09-26T02:53:00Z\")}}"
QUERYSQL = {'ts': {'$lte': datetime.datetime(2020,9,26,2,53,0)}}

# Connect DB
manager.connect()

# Check the status of connection
is_connected = manager.is_connected()
# Return type: boolean

# Check is the table is exist
table_name = 'titanic'
manager.is_table_exist(table_name)
# Return type: boolean

# Create Table
columns = [
  {'name': 'index', 'type': 'INTEGER', 'is_not_null': True},
  {'name': 'survived', 'type': 'INTEGER'},
  {'name': 'age', 'type': 'FLOAT'},
  {'name': 'embarked', 'type': 'INTEGER'}
]
manager.create_table(table_name=table_name, columns=columns)

# Insert Record
columns = ['index', 'survived', 'age', 'embarked']
records = [
  [0, 1, 22.0, 7.0],
  [1, 1, 2.0, 0.0],
  [2, 0, 26.0, 7.0]
]
manager.insert(table_name=table_name, columns=columns, records=records)

# Execute querySql in DB config
data = manager.execute_query()
# Return type: DataFrame
"""
      index  survived   age   embarked
0         0         1   22.0       7.0
1         1         1    2.0       0.0
2         2         0   26.0       7.0
...
"""

# Delete Document
condition = {'survived': 0}
is_success = db.delete_record(table_name=table_name, condition=condition)
# Return type: Boolean

# Delete Table
is_success = db.delete_table(table_name=table_name)
# Return type: Boolean

# Disconnect to DB
manager.disconnect()

S3 Example

from afs2datasource import DBManager, constant

# Init DBManager
manager = DBManager(
  db_type = constant.DB_TYPE['S3'],
  endpoint={ENDPOINT},
  access_key={ACCESSKEY},
  secret_key={SECRETKEY},
  buckets=[{
    'bucket': {BUCKET_NAME},
    'blobs': {
      'files': ['titanic.csv'],
      'folders': ['models/']
    }
  }]
)

# Connect S3
manager.connect()

# Check is the table is exist
bucket_name = 'titanic'
manager.is_table_exist(table_name=bucket_name)
# Return type: boolean

# Create Bucket
manager.create_table(table_name=bucket_name)

# Upload File to S3
local_file = '../titanic.csv'
s3_file = 'titanic.csv'
manager.insert(table_name=bucket_name, source=local_file, destination=s3_file)

# Download files in blob_list
# Download all files in directory
bucket_names = manager.execute_query()
# Return type: Array

# Check if file is exist or not
is_exist = manager.is_file_exist(table_name=bucket_name, file_name=s3_file)
# Return type: Boolean

# Delete the file in Bucket and return if the file is deleted successfully
is_success = manager.delete_record(table_name=bucket_name, file_name=s3_file)
# Return type: Boolean

# Delete Bucket
is_success = manager.delete_table(table_name=bucket_name)
# Return type: Boolean

APM Data source example

APMDSHelper(
  username,
  password,
  apmurl,
  machineIdList,
  parameterList,
  mongouri,
  timeRange)
APMDSHelper.execute()

Azure Blob Example

from afs2datasource import DBManager, constant

# Init DBManager
manager = DBManager(
 db_type=constant.DB_TYPE['AZUREBLOB'],
 account_key={ACCESS_KEY},
 account_name={ACCESS_NAME}
 containers=[{
   'container': {CONTAINER_NAME},
   'blobs': {
     'files': ['titanic.csv'],
     'folders': ['test/']
   }
 }]
)

# Connect Azure Blob
manager.connect()

# Check is the container is exist
container_name = 'container'
manager.is_table_exist(table_name=container_name)
# Return type: boolean

# Create container
manager.create_table(table_name=container_name)

# Upload File to Azure Blob
local_file = '../titanic.csv'
azure_file = 'titanic.csv'
manager.insert(table_name=container_name, source=local_file, destination=azure_file)

# Download files in `containers`
# Download all files in directory
container_names = manager.execute_query()
# Return type: Array

# Check if file is exist in container or not
is_exist = manager.is_file_exist(table_name=container_name, file_name=azure_file)
# Return type: Boolean

# Delete File
is_success = manager.delete_record(table_name=container_name,
file_file=azure_file)

# Delete Container
is_success = manager.delete_table(table_name=container_name)
# Return type: Boolean

Oracle Example

Notice

from afs2datasource import DBManager, constant

# Init DBManager
manager = DBManager(
  db_type=constant.DB_TYPE['ORACLEDB'],
  username=username,
  password=password,
  host=host,
  port=port,
  dsn=dsb,
  querySql="select {field_key} from {measurement_name}" # only support `SELECT`
)

# Connect OracleDB
manager.connect()

# Check is the container is exist
table_name = 'table'
manager.is_table_exist(table_name=table_name)
# Return type: boolean

# Execute querySql in DB config
data = manager.execute_query()
# Return type: DataFrame
"""
      index  survived   age   embarked
0         0         1   22.0       7.0
1         1         1    2.0       0.0
2         2         0   26.0       7.0
...
"""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

afs2_datasource-3.8.2-py3-none-any.whl (47.0 kB view details)

Uploaded Python 3

File details

Details for the file afs2_datasource-3.8.2-py3-none-any.whl.

File metadata

  • Download URL: afs2_datasource-3.8.2-py3-none-any.whl
  • Upload date:
  • Size: 47.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.9

File hashes

Hashes for afs2_datasource-3.8.2-py3-none-any.whl
Algorithm Hash digest
SHA256 616c3b87f2d6bbafeca19f7209622c3b32cbdc242f8ed99a4ced72b0c4c9848d
MD5 530411aed2c527a4ecd9e19317e89224
BLAKE2b-256 5aaa589b261d623e68014f139a7f5ba71ae7e92dd7a47a325a929e8c936ae499

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page