For AFS developer to access Datasource
Project description
AFS2-DataSource SDK
The AFS2-DataSource SDK package allows developers to easily access PostgreSQL, MongoDB, InfluxDB, S3 and APM.
Installation
Support Python version 3.6 or later
pip install afs2-datasource
Development
pip install -e .
Notice
AFS2-DataSource SDK uses asyncio
package, and Jupyter kernel is also using asyncio
and running an event loop, but these loops can't be nested.
(https://github.com/jupyter/notebook/issues/3397)
If using AFS2-DataSource SDK in Jupyter Notebook, please add the following codes to resolve this issue:
!pip install nest_asyncio
import nest_asyncio
nest_asyncio.apply()
API
DBManager
Init DBManager
DBManager.connect()
DBManager.disconnect()
DBManager.is_connected()
DBManager.is_connecting()
DBManager.get_dbtype()
DBManager.get_query()
DBManager.execute_query()
DBManager.create_table(table_name, columns)
DBManager.is_table_exist(table_name)
DBManager.is_file_exist(table_name, file_name)
DBManager.insert(table_name, columns, records, source, destination)
DBManager.delete_table(table_name)
DBManager.delete_record(table_name, file_name, condition)
Init DBManager
With Database Config
Import database config via Python.
from afs2datasource import DBManager, constant
# For MySQL
manager = DBManager(db_type=constant.DB_TYPE['MYSQL'],
username=username,
password=password,
host=host,
port=port,
database=database,
querySql="select {field} from {table}"
)
# For SQLServer
manager = DBManager(db_type=constant.DB_TYPE['SQLSERVER'],
username=username,
password=password,
host=host,
port=port,
database=database,
querySql="select {field} from {table}" # only support `SELECT`
)
# For PostgreSQL
manager = DBManager(db_type=constant.DB_TYPE['POSTGRES'],
username=username,
password=password,
host=host,
port=port,
database=database,
querySql="select {field} from {schema}.{table}"
)
# For MongoDB
manager = DBManager(db_type=constant.DB_TYPE['MONGODB'],
username=username,
password=password,
host=host,
port=port,
database=database,
collection=collection,
querySql="{}"
)
# For InfluxDB
manager = DBManager(db_type=constant.DB_TYPE['INFLUXDB'],
username=username,
password=password,
host=host,
port=port,
database=database,
querySql="select {field_key} from {measurement_name}"
)
# For Oracle Database
manager = DBManagerdb_type=constant.DB_TYPE['ORACLEDB'],
username=username,
password=password,
host=host,
port=port,
database=database,
querySql="select {field_key} from {measurement_name}" # only support `SELECT`
)
# For S3
manager = DBManager(db_type=constant.DB_TYPE['S3'],
endpoint=endpoint,
access_key=access_key,
secret_key=secret_key,
is_verify=False,
buckets=[{
'bucket': 'bucket_name',
'blobs': {
'files': ['file_name'],
'folders': ['folder_name']
}
}]
)
# For AWS S3
manager = DBManager(db_type=constant.DB_TYPE['AWS'],
access_key=access_key,
secret_key=secret_key,
buckets=[{
'bucket': 'bucket_name',
'blobs': {
'files': ['file_name'],
'folders': ['folder_name']
}
}]
)
# For APM
manager = DBManager(db_type=constant.DB_TYPE['APM'],
username=username, # sso username
password=password, # sso password
apmUrl=apmUrl,
apm_config=[{
'name': name # dataset name
'machines': [{
'id': machine_id # node_id in APM
}],
'parameters': [
parameter1, # parameter in APM
parameter2
]
}],
mongouri=mongouri,
# timeRange or timeLast
timeRange=[{'start': start_ts, 'end': end_ts}],
timeLast={'lastDays': lastDay, 'lastHours': lastHour, 'lastMins': lastMin}
)
# For Azure Blob
manager = DBManager(db_type=constant.DB_TYPE['AZUREBLOB'],
account_name=account_name,
account_key=account_key,
containers=[{
'container': container_name,
'blobs': {
'files': ['file_name']
'folders': ['folder_name']
}
}]
)
# For DataHub
manager = DBManager(db_type=constant.DB_TYPE['DATAHUB'],
username=username, # sso username
password=password, # sso password
datahub_url=datahub_url,
datahub_config=[{
"name": "string", # dataset name
"project_id": "project_id",
"node_id": "node_id",
"device_id": "device_id",
"tags": [
"tag_name"
]
}],
uri=mongouri, # mongouri or influxuri
# timeRange or timeLast
timeRange=[{'start': start_ts, 'end': end_ts}],
timeLast={'lastDays': lastDay, 'lastHours': lastHour, 'lastMins': lastMin}
)
How to get APM machine id and parameters
How to get DataHub project id, node id, device id and tag
DBManager.connect()
Connect to MySQL, PostgreSQL, MongoDB, InfluxDB, S3, APM with specified by the given config.
manager.connect()
DBManager.disconnect()
Close the connection. Note S3 datasource not support this function.
manager.disconnect()
DBManager.is_connected()
Return if the connection is connected.
manager.is_connected()
DBManager.is_connecting()
Return if the connection is connecting.
manager.is_connecting()
DBManager.get_dbtype()
Return database type of the connection.
manager.get_dbtype()
# Return: str
DBManager.get_query()
Return query in the config.
manager.get_query()
# MySQL, Oracle Database
# Return type: String
"""
select {field} from {table} {condition}
"""
# PostgreSQL
# Return type: String
"""
select {field} from {schema}.{table}
"""
# MongoDB
# Return type: String
"""
{"{key}": {value}}
"""
# InfluxDB
# Return type: String
"""
select {field_key} from {measurement_name}
"""
# S3
# Return type: List
"""
[{
'bucket': 'bucket_name',
'blobs': {
'files': ['file_name'],
'folders': ['folder_name']
}
}]
"""
# Azure Blob
# Return type: List
"""
[{
'container': container_name,
'blobs': {
'files': ['file_name']
'folders': ['folder_name']
}
}]
"""
# APM
# Return type: Dict
"""
{
'apm_config': [{
'name': name # dataset name
'machines': [{
'id': machine_id # node_id in APM
}],
'parameters': [
parameter1, # parameter in APM
parameter2
]
}],
'time_range': [{'start': start_ts, 'end': end_ts}],
'time_last': {'lastDays': lastDay, 'lastHours': lastHour, 'lastMins': lastMin}
}
"""
# DataHub
# Return type: Dict
"""
{
'config': [{
"name": "string", # dataset name
"project_id": "project_id",
"node_id": "node_id",
"device_id": "device_id",
"tags": [
"tag_name"
]
}],
'time_range': [{'start': start_ts, 'end': end_ts}],
'time_last': {'lastDays': lastDay, 'lastHours': lastHour, 'lastMins': lastMin}
}
"""
DBManager.execute_query(querySql=None)
Return the result in MySQL, PostgreSQL, MongoDB or InfluxDB after executing the querySql
in config or querySql
parameter.
Download files which are specified in buckets
in S3 config or containers
in Azure Blob config, and return buckets
and containers
name of the array.
If only download one csv file, then return dataframe
.
Return dataframe of list which of Machine
and Parameter
in timeRange
or timeLast
from APM.
Return dataframe of list which of Tag
in timeRange
or timeLast
from DataHub.
# For MySQL, Postgres, MongoDB, InfluxDB, Oracle Database, APM and DataHub
df = manager.execute_query()
# Return type: DataFrame
"""
Age Cabin Embarked Fare ... Sex Survived Ticket_info Title2
0 22.0 7.0 2.0 7.2500 ... 1.0 0.0 2.0 2.0
1 38.0 2.0 0.0 71.2833 ... 0.0 1.0 14.0 3.0
2 26.0 7.0 2.0 7.9250 ... 0.0 1.0 31.0 1.0
3 35.0 2.0 2.0 53.1000 ... 0.0 1.0 36.0 3.0
4 35.0 7.0 2.0 8.0500 ... 1.0 0.0 36.0 2.0
...
"""
# For Azure Blob
container_names = manager.execute_query()
# Return Array
# Return type: DataFrame
"""
['container1', 'container2']
"""
# or Return type: DataFrame
"""
Age Cabin Embarked Fare ... Sex Survived Ticket_info Title2
0 22.0 7.0 2.0 7.2500 ... 1.0 0.0 2.0 2.0
1 38.0 2.0 0.0 71.2833 ... 0.0 1.0 14.0 3.0
2 26.0 7.0 2.0 7.9250 ... 0.0 1.0 31.0 1.0
3 35.0 2.0 2.0 53.1000 ... 0.0 1.0 36.0 3.0
4 35.0 7.0 2.0 8.0500 ... 1.0 0.0 36.0 2.0
...
"""
# For S3
bucket_names = manager.execute_query()
# Return Array
"""
['bucket1', 'bucket2']
"""
# or Return type: DataFrame
"""
Age Cabin Embarked Fare ... Sex Survived Ticket_info Title2
0 22.0 7.0 2.0 7.2500 ... 1.0 0.0 2.0 2.0
1 38.0 2.0 0.0 71.2833 ... 0.0 1.0 14.0 3.0
2 26.0 7.0 2.0 7.9250 ... 0.0 1.0 31.0 1.0
3 35.0 2.0 2.0 53.1000 ... 0.0 1.0 36.0 3.0
4 35.0 7.0 2.0 8.0500 ... 1.0 0.0 36.0 2.0
...
"""
DBManager.create_table(table_name, columns=[])
Create table in database for MySQL, Postgres, MongoDB and InfluxDB. Noted, to create a new measurement in influxdb simply insert data into the measurement.
Create Bucket/Container in S3/Azure Blob.
Note: PostgreSQL table_name format schema.table
# For MySQL, Postgres, MongoDB and InfluxDB
table_name = 'titanic'
columns = [
{'name': 'index', 'type': 'INTEGER', 'is_primary': True},
{'name': 'survived', 'type': 'FLOAT', 'is_not_null': True},
{'name': 'age', 'type': 'FLOAT'},
{'name': 'embarked', 'type': 'INTEGER'}
]
manager.create_table(table_name=table_name, columns=columns)
# For S3
bucket_name = 'bucket'
manager.create_table(table_name=bucket_name)
# For Azure Blob
container_name = 'container'
manager.create_table(table_name=container_name)
DBManager.is_table_exist(table_name)
Return if the table exists in MySQL, Postgres, MongoDB or Influxdb.
Return if the bucket exists in S3.
Return if the container exists in Azure Blob.
# For Postgres, MongoDB and InfluxDB
table_name = 'titanic'
manager.is_table_exist(table_name=table_name)
# For S3
bucket_name = 'bucket'
manager.is_table_exist(table_name=bucket_name)
# For Azure blob
container_name = 'container'
manager.is_table_exist(table_name=container_name)
DBManager.is_file_exist(table_name, file_name)
Return if the file exists in the bucket in S3 & AWS S3.
Note this function only support S3 and AWS S3.
# For S3 & AWS S3
bucket_name = 'bucket'
file_name = 'test.csv
manager.is_file_exist(table_name=bucket_name, file_name=file_name)
# Return: Boolean
DBManager.insert(table_name, columns=[], records=[], source='', destination='')
Insert records into table in MySQL, Postgres, MongoDB or InfluxDB.
Upload file to S3 and Azure Blob.
# For MySQL, Postgres, MongoDB and InfluxDB
table_name = 'titanic'
columns = ['index', 'survived', 'age', 'embarked']
records = [
[0, 1, 22.0, 7.0],
[1, 1, 2.0, 0.0],
[2, 0, 26.0, 7.0]
]
manager.insert(table_name=table_name, columns=columns, records=records)
# For S3
bucket_name = 'bucket'
source='test.csv' # local file path
destination='test_s3.csv' # the file path and name in s3
manager.insert(table_name=bucket_name, source=source, destination=destination)
# For Azure Blob
container_name = 'container'
source='test.csv' # local file path
destination='test_s3.csv' # the file path and name in Azure blob
manager.insert(table_name=container_name, source=source, destination=destination)
Use APM data source
- Get Hist Raw data from SCADA Mongo data base
- Required
- username: APM SSO username
- password: APM SSO password
- mongouri: mongo data base uri
- apmurl: APM api url
- apm_config: APM config (type:Array)
- name: dataset name
- machines: APM machine list (type:Array)
- id: APM machine Id
- parameters: APM parameter name list (type:Array)
- time range: Training date range
- example:
[{'start':'2019-05-01', 'end':'2019-05-31'}]
- time last: Training date range
- example:
{'lastDays:' 1, 'lastHours': 2, 'lastMins': 3}
DBManager.delete_table(table_name)
Delete table in MySQL, Postgres, MongoDB or InfluxDB, and return if the table is deleted successfully.
Delete the bucket in S3 and return if the table is deleted successfully.
Delete the container in Azure Blob and return if the table is deleted successfully.
# For Postgres, MongoDB or InfluxDB
table_name = 'titanic'
is_success = manager.delete_table(table_name=table_name)
# Return: Boolean
# For S3
bucket_name = 'bucket'
is_success = manager.delete_table(table_name=bucket_name)
# Return: Boolean
# For Azure Blob
container_name = 'container'
is_success = manager.delete_table(table_name=container_name)
# Return: Boolean
DBManager.delete_record(table_name, file_name, condition)
Delete record with condition
in table_name
in MySQL, Postgres and MongoDB, and return if delete successfully.
Delete file in bucket in S3 and in container in Azure Blob, and return if the file is deleted successfully.
Note Influx not support this function.
# For MySQL, Postgres
table_name = 'titanic'
condition = 'passenger_id = 1'
is_success = manager.delete_record(table_name=table_name, condition=condition)
# Return: Boolean
# For MongoDB
table_name = 'titanic'
condition = {'passanger_id': 1}
is_success = manager.delete_record(table_name=table_name, condition=condition)
# Return: Boolean
# For S3
bucket_name = 'bucket'
file_name = 'data/titanic.csv'
is_success = manager.delete_record(table_name=bucket_name, file_name=file_name)
# Return: Boolean
# For Azure Blob
container_name = 'container'
file_name = 'data/titanic.csv'
is_success = manager.delete_record(table_name=container_name,file_name=file_name)
# Return: Boolean
Example
MongoDB Example
from afs2datasource import DBManager, constant
# Init DBManager
manager = DBManager(
db_type=constant.DB_TYPE['MONGODB'],
username={USERNAME},
password={PASSWORD},
host={HOST},
port={PORT},
database={DATABASE},
collection={COLLECTION},
querySql={QUERYSQL}
)
## Mongo query ISODate Example
QUERYSQL = "{\"ts\": {\"$lte\": ISODate(\"2020-09-26T02:53:00Z\")}}"
QUERYSQL = {'ts': {'$lte': datetime.datetime(2020,9,26,2,53,0)}}
# Connect DB
manager.connect()
# Check the status of connection
is_connected = manager.is_connected()
# Return type: boolean
# Check is the table is exist
table_name = 'titanic'
manager.is_table_exist(table_name)
# Return type: boolean
# Create Table
columns = [
{'name': 'index', 'type': 'INTEGER', 'is_not_null': True},
{'name': 'survived', 'type': 'INTEGER'},
{'name': 'age', 'type': 'FLOAT'},
{'name': 'embarked', 'type': 'INTEGER'}
]
manager.create_table(table_name=table_name, columns=columns)
# Insert Record
columns = ['index', 'survived', 'age', 'embarked']
records = [
[0, 1, 22.0, 7.0],
[1, 1, 2.0, 0.0],
[2, 0, 26.0, 7.0]
]
manager.insert(table_name=table_name, columns=columns, records=records)
# Execute querySql in DB config
data = manager.execute_query()
# Return type: DataFrame
"""
index survived age embarked
0 0 1 22.0 7.0
1 1 1 2.0 0.0
2 2 0 26.0 7.0
...
"""
# Delete Document
condition = {'survived': 0}
is_success = db.delete_record(table_name=table_name, condition=condition)
# Return type: Boolean
# Delete Table
is_success = db.delete_table(table_name=table_name)
# Return type: Boolean
# Disconnect to DB
manager.disconnect()
S3 Example
from afs2datasource import DBManager, constant
# Init DBManager
manager = DBManager(
db_type = constant.DB_TYPE['S3'],
endpoint={ENDPOINT},
access_key={ACCESSKEY},
secret_key={SECRETKEY},
buckets=[{
'bucket': {BUCKET_NAME},
'blobs': {
'files': ['titanic.csv'],
'folders': ['models/']
}
}]
)
# Connect S3
manager.connect()
# Check is the table is exist
bucket_name = 'titanic'
manager.is_table_exist(table_name=bucket_name)
# Return type: boolean
# Create Bucket
manager.create_table(table_name=bucket_name)
# Upload File to S3
local_file = '../titanic.csv'
s3_file = 'titanic.csv'
manager.insert(table_name=bucket_name, source=local_file, destination=s3_file)
# Download files in blob_list
# Download all files in directory
bucket_names = manager.execute_query()
# Return type: Array
# Check if file is exist or not
is_exist = manager.is_file_exist(table_name=bucket_name, file_name=s3_file)
# Return type: Boolean
# Delete the file in Bucket and return if the file is deleted successfully
is_success = manager.delete_record(table_name=bucket_name, file_name=s3_file)
# Return type: Boolean
# Delete Bucket
is_success = manager.delete_table(table_name=bucket_name)
# Return type: Boolean
APM Data source example
APMDSHelper(
username,
password,
apmurl,
machineIdList,
parameterList,
mongouri,
timeRange)
APMDSHelper.execute()
Azure Blob Example
from afs2datasource import DBManager, constant
# Init DBManager
manager = DBManager(
db_type=constant.DB_TYPE['AZUREBLOB'],
account_key={ACCESS_KEY},
account_name={ACCESS_NAME}
containers=[{
'container': {CONTAINER_NAME},
'blobs': {
'files': ['titanic.csv'],
'folders': ['test/']
}
}]
)
# Connect Azure Blob
manager.connect()
# Check is the container is exist
container_name = 'container'
manager.is_table_exist(table_name=container_name)
# Return type: boolean
# Create container
manager.create_table(table_name=container_name)
# Upload File to Azure Blob
local_file = '../titanic.csv'
azure_file = 'titanic.csv'
manager.insert(table_name=container_name, source=local_file, destination=azure_file)
# Download files in `containers`
# Download all files in directory
container_names = manager.execute_query()
# Return type: Array
# Check if file is exist in container or not
is_exist = manager.is_file_exist(table_name=container_name, file_name=azure_file)
# Return type: Boolean
# Delete File
is_success = manager.delete_record(table_name=container_name,
file_file=azure_file)
# Delete Container
is_success = manager.delete_table(table_name=container_name)
# Return type: Boolean
Oracle Example
Notice
- Install OracleDB client Documents
from afs2datasource import DBManager, constant
# Init DBManager
manager = DBManager(
db_type=constant.DB_TYPE['ORACLEDB'],
username=username,
password=password,
host=host,
port=port,
dsn=dsb,
querySql="select {field_key} from {measurement_name}" # only support `SELECT`
)
# Connect OracleDB
manager.connect()
# Check is the container is exist
table_name = 'table'
manager.is_table_exist(table_name=table_name)
# Return type: boolean
# Execute querySql in DB config
data = manager.execute_query()
# Return type: DataFrame
"""
index survived age embarked
0 0 1 22.0 7.0
1 1 1 2.0 0.0
2 2 0 26.0 7.0
...
"""
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file afs2_datasource-3.8.2-py3-none-any.whl
.
File metadata
- Download URL: afs2_datasource-3.8.2-py3-none-any.whl
- Upload date:
- Size: 47.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 616c3b87f2d6bbafeca19f7209622c3b32cbdc242f8ed99a4ced72b0c4c9848d |
|
MD5 | 530411aed2c527a4ecd9e19317e89224 |
|
BLAKE2b-256 | 5aaa589b261d623e68014f139a7f5ba71ae7e92dd7a47a325a929e8c936ae499 |