Skip to main content

A graph database built on top of cassandra

Project description

Agamemnon

Agamemnon is a thin library built on top of pycassa. It allows you to use the Cassandra database (<http://cassandra.apache.org>) as a graph database. Using cassandra provides an extremely high level of reliability and scalability that is not available in other graph databases. Cassandra provides integrated support for both data partitioning as well as replication via configuration.

Much of the api was inspired by the excellent neo4j.py project (<http://components.neo4j.org/neo4j.py/snapshot/>), however the support in this package has diverged from that project.

Agamemnon also has integrated RDF support through RDFLib (http://www.rdflib.net/)

Usage

The following is an example of how to use Agamemnon in your own code

>>> from agamemnon.factory import load_from_settings

First, we can decide which kind of data store we are creating. In this case we’re creating an InMemory data store

>>> config = {'backend': 'agamemnon.memory.InMemoryDataStore'}
>>> graph_db = load_from_settings(config)

In honor of The Simpsons Movie, we’ll create a node called spiderpig

>>> spiderpig = graph_db.create_node('test_type', 'spiderpig', {'sound':'oink'})

Now we will retrieve the spiderpig from the graph and check that the attributes were correct.

>>> spiderpig = graph_db.get_node('test_type', 'spiderpig')
>>> spiderpig['sound']
'oink'

Now we will create a friend for the spiderpig (who also happens to be his alter ego). Again, let’s check to confirm that the node and it’s attributes were created correctly.

>>> harry_plopper = graph_db.create_node('test_type', 'Harry Plopper', {'sound':'plop'})
>>> harry_plopper = graph_db.get_node('test_type','Harry Plopper')
>>> harry_plopper['sound']
'plop'

Nodes can have different types as well. Here we create a node of type simpson, with name Homer. This node has different attributes than the previous nodes.

>>> homer = graph_db.create_node('simpson', 'Homer', {'sound':'Doh', 'job':'Safety Inspector'})
>>> homer = graph_db.get_node('simpson', 'Homer')
>>> homer['sound']
'Doh'
>>> homer['job']
'Safety Inspector'

Nodes by themselves are not very useful. Let’s create a relationship between spiderpig and Harry Plopper.

>>> rel = spiderpig.friend(harry_plopper, key='spiderpig_harry_plopper_alliance', alter_ego=True, best=False)

This creates a relationship of type friend. The key has been specified in this case, although it is not necessary. If no key is supplied a uuid will be generated for the relationship.

Every node type has a “reference node”. This is a metanode for the type and functions as an index for all nodes of a given type.

>>> reference_node = graph_db.get_reference_node('test_type')

Getting the instances from the test_type reference node should return the Harry Plopper node and the spiderpig node.

>>> sorted([rel.target_node.key for rel in reference_node.instance.outgoing])
['Harry Plopper', 'spiderpig']

The spiderpig should only have one friend at this point, and it should be Harry Plopper

>>> friends = [rel for rel in spiderpig.friend]
>>> len(friends)
1
>>> friends[0].target_node.key
'Harry Plopper'

Now let’s confirm that Harry Plopper is friends with spider pig as well:

>>> 'spiderpig' in harry_plopper.friend
True

And, once more, make sure that spider pig is Harry Plopper’s only friend:

>>> friends = [rel for rel in harry_plopper.friend]
>>> len(friends)
1
>>> friends[0].source_node.key
'spiderpig'

They should not be best friends. Let’s confirm this:

>>> friends[0]['best']
False

Homer is spiderpig’s best friend:

>>> rel = homer.friend(spiderpig, best=True, alter_ego=False, type='love', strength=100)

Here we added additional attributes to the relationship.

Now spiderpig should have 2 friends.

>>> friends = [rel for rel in spiderpig.friend]
>>> len(friends)
2

You can get a list of all of the relationships of a particular type between a node and other nodes with a particular key

>>> homer_spiderpig_love = spiderpig.friend.relationships_with('Homer')
>>> len(homer_spiderpig_love)
1
>>> homer_spiderpig_love = spiderpig.friend.relationships_with('Homer')
>>> print homer_spiderpig_love[0]['strength']
100

Thanks To

This project is an extension of the globusonline.org project and is being used to power the upcoming version of globusonline.org. I’d like to thank Ian Foster and Steve Tuecke for leading that project, and all of the members of the cloud services team for participating in this effort, especially: Vijay Anand, Kyle Chard, Martin Feller and Mike Russell for helping with design and testing. I’d also like to thank Bryce Allen for his help with some of the python learning curve.

0.3.1.0

  • Added many tests and fixed bugs with certain operations

  • Added RDF support through RDFlib

0.2.1.3

  • fixed bug with in memory column comparisons

0.2.1.2

  • fixing bug with root reference node, adding support for unicode serialization and bumping version num

0.2.1.1

  • adding method to get all relationships regardless of type

  • removing generated doc files and updating index.rst

  • adding doctest to usage documentation and setup.cfg

  • updating setup files with requirements

  • multiple fixes for issues discovered by globusonline

0.2.1.0

  • added support for contains operator (with relationships_with(other_node_key) function) and added type conversion for pr

  • merging relationship code from globusonline

0.0.1.3

  • Updating datastore.save_node so that it no longer uses batch storage

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agamemnon-0.4.0.tar.gz (28.0 kB view details)

Uploaded Source

File details

Details for the file agamemnon-0.4.0.tar.gz.

File metadata

  • Download URL: agamemnon-0.4.0.tar.gz
  • Upload date:
  • Size: 28.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for agamemnon-0.4.0.tar.gz
Algorithm Hash digest
SHA256 8892271f111cca0bedb4c8e02cf0aa561de5af6cfff0af4ad0dffbd656ef9013
MD5 46f93608c6866bb191ecfa78df673445
BLAKE2b-256 1b4473e25e6c92f2ffb5cc0913e687c399f77ba898344a76504f168b242d46d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page