Skip to main content

Atomic Graph ATtention networks for predicting atomic energies and forces.

Project description

AGAT (Atomic Graph ATtention networks)

GitHub Pypi PyPI - Downloads PyPI - Wheel

The PyTorch backend AGAT is available now, try with pip install agat==8.*. For previous version, install with pip install agat==7.*.



Model architecture

Using AGAT

The documentation of AGAT API is available.

Installation

Install with conda environment

  • Create a new environment

    conda create -n agat python==3.10
    
  • Activate the environment

    conda activate agat
    
  • Install PyTorch,
    Navigate to the installation page and choose you platform. For example (GPU):

    conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
    
  • Install dgl.
    Please navigate to the Get Started page of dgl. For example (GPU):

    conda install -c dglteam/label/cu118 dgl
    
  • Install AGAT package

    pip install agat
    
  • Install CUDA and CUDNN [Optional].

    • For HPC, you may load CUDA by checking module av, or you can contact your administrator for help.
    • CUDA Toolkit
    • cuDNN

Quick start

Prepare VASP calculations

Run VASP calculations at this step.

Collect paths of VASP calculations

  • We provided examples of VASP outputs at VASP_calculations_example.
  • Find all directories containing OUTCAR file:
    find . -name OUTCAR > paths.log
    
  • Remove the string 'OUTCAR' in paths.log.
    sed -i 's/OUTCAR$//g' paths.log
    
  • Specify the absolute paths in paths.log.
    sed -i "s#^.#${PWD}#g" paths.log
    

Build database

from agat.data import BuildDatabase
if __name__ == '__main__':
    database = BuildDatabase(mode_of_NN='ase_dist', num_of_cores=16)
    database.build()

Train AGAT model

from agat.model import Fit
f = Fit()
f.fit()

Application (geometry optimization)

from ase.optimize import BFGS
from agat.app import AgatCalculator
from ase.io import read
from ase import Atoms

model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'

atoms = read('POSCAR')
calculator=AgatCalculator(model_save_dir,
                          graph_build_scheme_dir)
atoms = Atoms(atoms, calculator=calculator)
dyn = BFGS(atoms, trajectory='test.traj')
dyn.run(fmax=0.05)

Application (high-throughput prediction)

from agat.app.cata import HpAds

model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'
formula='NiCoFePdPt'

ha = HpAds(model_save_dir=model_save_dir, graph_build_scheme_dir=graph_build_scheme_dir)
ha.run(formula=formula)

For more custom manipulations, see our documentation page.

Some default parameters

agat/default_parameters.py; Explanations: docs/sphinx/source/Default parameters.md.

Change log

Please check Change_log.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agat-9.0.0.tar.gz (58.2 kB view details)

Uploaded Source

Built Distribution

agat-9.0.0-py3-none-any.whl (65.9 kB view details)

Uploaded Python 3

File details

Details for the file agat-9.0.0.tar.gz.

File metadata

  • Download URL: agat-9.0.0.tar.gz
  • Upload date:
  • Size: 58.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for agat-9.0.0.tar.gz
Algorithm Hash digest
SHA256 b9103abdf255ed58b76e7cbdde0ad4ddabaff2164048e189e48069e1b5517bc3
MD5 8126f7deb01e1793530462fec6094388
BLAKE2b-256 6a1463cdb12423a74d5dfd1f13a8387a66bb661422844903728834f0924c5908

See more details on using hashes here.

File details

Details for the file agat-9.0.0-py3-none-any.whl.

File metadata

  • Download URL: agat-9.0.0-py3-none-any.whl
  • Upload date:
  • Size: 65.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for agat-9.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 afa7553818bf44112ba99e94bb0e75cdccab15497c2892ddac6131b139f5bcbb
MD5 f6a9b7b79d482b2a883d06625c9cdcbd
BLAKE2b-256 5fc490b4c2ca0a3e120af2963917f0936b31b30fbf8feebad9fc24f98b7ac462

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page