Skip to main content

Atomic Graph ATtention networks for predicting atomic energies and forces.

Project description

AGAT (Atomic Graph ATtention networks)

DOI GitHub PyPI - Downloads PyPI - Wheel GitHub tag (with filter)

Installation

Install with conda environment

  • Create a new environment
conda create -n agat python==3.10
  • Activate the environment
conda activate agat
  • Install package
pip install agat
conda install -c dglteam/label/cu118 dgl

Using AGAT

The documentation of AGAT API is available.

Quick start

Prepare VASP calculations

Collect paths of VASP calculations

  • We provided examples of VASP outputs at VASP_calculations_example.
  • Find all directories containing OUTCAR file:
    find . -name OUTCAR > paths.log
    
  • Remove the string 'OUTCAR' in paths.log.
    sed -i 's/OUTCAR$//g' paths.log
    
  • Specify the absolute paths in paths.log.
    sed -i "s#^.#${PWD}#g" paths.log
    

Build database

from agat.data import AgatDatabase
if __name__ == '__main__':
    ad = AgatDatabase(mode_of_NN='ase_dist', num_of_cores=2)
    ad.build()

Train AGAT model

from agat.model import Train
at = Train()
at.fit_energy_model()
at.fit_force_model()

Model prediction

from agat.app import GatApp
energy_model_save_dir = os.path.join('out_file', 'energy_ckpt')
force_model_save_dir = os.path.join('out_file', 'force_ckpt')
graph_build_scheme_dir = 'dataset'
app = GatApp(energy_model_save_dir, force_model_save_dir, graph_build_scheme_dir)
graph, info = app.get_graph('POSCAR')
energy = app.get_energy(graph)
forces = app.get_forces(graph)

Geometry optimization

from ase.io import read
from ase.optimize import BFGS
from agat.app import GatAseCalculator
from agat.default_parameters import default_hp_config
poscar = read('POSCAR')
calculator=GatAseCalculator(energy_model_save_dir,
                            force_model_save_dir,
                            graph_build_scheme_dir)
poscar = Atoms(poscar, calculator=calculator)
dyn = BFGS(poscar, trajectory='test.traj')
dyn.run(**default_hp_config['opt_config'])

Change log

Please check Change_log.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agat-7.12.1.tar.gz (58.5 kB view details)

Uploaded Source

Built Distribution

agat-7.12.1-py3-none-any.whl (62.7 kB view details)

Uploaded Python 3

File details

Details for the file agat-7.12.1.tar.gz.

File metadata

  • Download URL: agat-7.12.1.tar.gz
  • Upload date:
  • Size: 58.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-7.12.1.tar.gz
Algorithm Hash digest
SHA256 41dc4337e61097dc5a4e4030644597f5ee3c258e174a5dfe934a2687699a9d3e
MD5 fde3296b4d930f35e56b3ae5dd3e9bc3
BLAKE2b-256 86c1ff062e174be16a8f47b1f1766a17a1e2ab9bf12651cca0e3ff021797b271

See more details on using hashes here.

File details

Details for the file agat-7.12.1-py3-none-any.whl.

File metadata

  • Download URL: agat-7.12.1-py3-none-any.whl
  • Upload date:
  • Size: 62.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-7.12.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5e2a2c535c80667f529efc9cc50807155b189ea5a58e71d2ed3bc34ffc507168
MD5 1f4a0c00fcad4ac2a5086f9154b64608
BLAKE2b-256 adc4bc36b19f3a4575c3104456209755d2655dc6d35d1d472ed5c13a8a9a24ca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page