Skip to main content

Atomic Graph ATtention networks for predicting atomic energies and forces.

Project description

AGAT (Atomic Graph ATtention networks)

DOI GitHub PyPI - Downloads PyPI - Wheel GitHub tag (with filter)

Installation

Install with conda environment

  • Create a new environment
conda create -n agat python==3.10
  • Activate the environment
conda activate agat
  • Install package
pip install agat
conda install -c dglteam/label/cu118 dgl

Using AGAT

The documentation of AGAT API is available.

Quick start

Prepare VASP calculations

Collect paths of VASP calculations

  • We provided examples of VASP outputs at VASP_calculations_example.
  • Find all directories containing OUTCAR file:
    find . -name OUTCAR > paths.log
    
  • Remove the string 'OUTCAR' in paths.log.
    sed -i 's/OUTCAR$//g' paths.log
    
  • Specify the absolute paths in paths.log.
    sed -i "s#^.#${PWD}#g" paths.log
    

Build database

from agat.data import AgatDatabase
if __name__ == '__main__':
    ad = AgatDatabase(mode_of_NN='ase_dist', num_of_cores=2)
    ad.build()

Train AGAT model

from agat.model import Train
at = Train()
at.fit_energy_model()
at.fit_force_model()

Model prediction

from agat.app import GatApp
energy_model_save_dir = os.path.join('out_file', 'energy_ckpt')
force_model_save_dir = os.path.join('out_file', 'force_ckpt')
graph_build_scheme_dir = 'dataset'
app = GatApp(energy_model_save_dir, force_model_save_dir, graph_build_scheme_dir)
graph, info = app.get_graph('POSCAR')
energy = app.get_energy(graph)
forces = app.get_forces(graph)

Geometry optimization

from ase.io import read
from ase.optimize import BFGS
from agat.app import GatAseCalculator
from agat.default_parameters import default_hp_config
poscar = read('POSCAR')
calculator=GatAseCalculator(energy_model_save_dir,
                            force_model_save_dir,
                            graph_build_scheme_dir)
poscar = Atoms(poscar, calculator=calculator)
dyn = BFGS(poscar, trajectory='test.traj')
dyn.run(**default_hp_config['opt_config'])

Change log

Please check Change_log.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agat-7.12.2.tar.gz (58.6 kB view details)

Uploaded Source

Built Distribution

agat-7.12.2-py3-none-any.whl (62.9 kB view details)

Uploaded Python 3

File details

Details for the file agat-7.12.2.tar.gz.

File metadata

  • Download URL: agat-7.12.2.tar.gz
  • Upload date:
  • Size: 58.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-7.12.2.tar.gz
Algorithm Hash digest
SHA256 e8be01a6e866baff6ecda2e85a1b5df53c5da103b201c80a507f9a451edc7d91
MD5 2561c2f2776c3f3652a2c91a3bda8e20
BLAKE2b-256 dd6c042dab01187a611d136fcd6a12360f87aabbc0fa8491afc17e35f7f4e5ce

See more details on using hashes here.

File details

Details for the file agat-7.12.2-py3-none-any.whl.

File metadata

  • Download URL: agat-7.12.2-py3-none-any.whl
  • Upload date:
  • Size: 62.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-7.12.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e16671d14351dba7cbd62f78288dcadb284ff1b43724054b2d9007c360011f25
MD5 037392c27955e2083fd13ebbcb4d4057
BLAKE2b-256 b458269b6db782a0be6195a364e826f2949dd7c3613f1a3be3ec2f3beb123844

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page