Skip to main content

Atomic Graph ATtention networks for predicting atomic energies and forces.

Project description

AGAT (Atomic Graph ATtention networks)

DOI GitHub PyPI - Downloads PyPI - Wheel GitHub tag (with filter)

Installation

Install with conda environment

  • Create a new environment
conda create -n agat python==3.10
  • Activate the environment
conda activate agat
  • Install package
pip install agat
conda install -c dglteam/label/cu118 dgl

Using AGAT

The documentation of AGAT API is available.

Quick start

Prepare VASP calculations

Collect paths of VASP calculations

  • We provided examples of VASP outputs at VASP_calculations_example.
  • Find all directories containing OUTCAR file:
    find . -name OUTCAR > paths.log
    
  • Remove the string 'OUTCAR' in paths.log.
    sed -i 's/OUTCAR$//g' paths.log
    
  • Specify the absolute paths in paths.log.
    sed -i "s#^.#${PWD}#g" paths.log
    

Build database

from agat.data import AgatDatabase
if __name__ == '__main__':
    ad = AgatDatabase(mode_of_NN='ase_dist', num_of_cores=2)
    ad.build()

Train AGAT model

from agat.model import Train
at = Train()
at.fit_energy_model()
at.fit_force_model()

Model prediction

from agat.app import GatApp
energy_model_save_dir = os.path.join('out_file', 'energy_ckpt')
force_model_save_dir = os.path.join('out_file', 'force_ckpt')
graph_build_scheme_dir = 'dataset'
app = GatApp(energy_model_save_dir, force_model_save_dir, graph_build_scheme_dir)
graph, info = app.get_graph('POSCAR')
energy = app.get_energy(graph)
forces = app.get_forces(graph)

Geometry optimization

from ase.io import read
from ase.optimize import BFGS
from agat.app import GatAseCalculator
from agat.default_parameters import default_hp_config
poscar = read('POSCAR')
calculator=GatAseCalculator(energy_model_save_dir,
                            force_model_save_dir,
                            graph_build_scheme_dir)
poscar = Atoms(poscar, calculator=calculator)
dyn = BFGS(poscar, trajectory='test.traj')
dyn.run(**default_hp_config['opt_config'])

Change log

Please check Change_log.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agat-7.13.tar.gz (58.7 kB view details)

Uploaded Source

Built Distribution

agat-7.13-py3-none-any.whl (63.0 kB view details)

Uploaded Python 3

File details

Details for the file agat-7.13.tar.gz.

File metadata

  • Download URL: agat-7.13.tar.gz
  • Upload date:
  • Size: 58.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-7.13.tar.gz
Algorithm Hash digest
SHA256 f5ded62947a4e6e35cca7c25b43ca473cb86e8ca8bf4779f1a17a0414ceea618
MD5 5bd443eff445adf90c0d677080775e82
BLAKE2b-256 9e15a702f24f6cf7458e70d8839c4d41f3d2f951e0599fd5ffc5ccd15d5fe7c8

See more details on using hashes here.

File details

Details for the file agat-7.13-py3-none-any.whl.

File metadata

  • Download URL: agat-7.13-py3-none-any.whl
  • Upload date:
  • Size: 63.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-7.13-py3-none-any.whl
Algorithm Hash digest
SHA256 9d7b50f82625a8183a16724bb3296fae237228e5947452ca72e18925fc0b5f20
MD5 10fec26cba3e85d71d6d36f0d9b0a452
BLAKE2b-256 94d20e9cb05cbba520a4acbdd55a463039596f6d527ecb03d4e5db683027b5f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page