Atomic Graph ATtention networks for predicting atomic energies and forces.
Project description
AGAT (Atomic Graph ATtention networks)
Using AGAT
The documentation of AGAT API is available.
Installation
Install with conda environment
-
Create a new environment
conda create -n agat python==3.10
-
Activate the environment
conda activate agat
-
Install package
pip install agat
-
Install dgl.
Please navigate to the Get Started page of dgl. For GPU version:conda install -c dglteam/label/cu118 dgl
For now, the cpu version 1.1.2 of dgl has bugs. You can install the cpu version with
pip install dgl==1.1.1
. -
Change dgl backend to
tensorflow
.If you still cannot use
tensorflow
backenddgl
, run the following on Linux OS:wget https://data.dgl.ai/wheels/cu118/dgl-1.1.1%2Bcu118-cp310-cp310-manylinux1_x86_64.whl pip install ./dgl-1.1.1+cu118-cp310-cp310-manylinux1_x86_64.whl pip install numpy --upgrade
-
For
tensorflow
of GPU version, if you don't have CUDA and CUDNN on your device, you need to run (Linux OS):conda install -c conda-forge cudatoolkit=11.8.0 pip install nvidia-cudnn-cu11==8.6.0.163 mkdir -p $CONDA_PREFIX/etc/conda/activate.d echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh echo 'export LD_LIBRARY_PATH=$CUDNN_PATH/lib:$CONDA_PREFIX/lib/:$LD_LIBRARY_PATH' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh # Verify install: python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
Refer to Install TensorFlow with pip and Tensorflow_GPU for more details (other OSs).
Quick start
Prepare VASP calculations
Collect paths of VASP calculations
- We provided examples of VASP outputs at VASP_calculations_example.
- Find all directories containing
OUTCAR
file:find . -name OUTCAR > paths.log
- Remove the string 'OUTCAR' in
paths.log
.sed -i 's/OUTCAR$//g' paths.log
- Specify the absolute paths in
paths.log
.sed -i "s#^.#${PWD}#g" paths.log
Build database
from agat.data import AgatDatabase
if __name__ == '__main__':
ad = AgatDatabase(mode_of_NN='ase_dist', num_of_cores=2)
ad.build()
Train AGAT model
from agat.model import Train
at = Train()
at.fit_energy_model()
at.fit_force_model()
Model prediction
from agat.app import GatApp
energy_model_save_dir = os.path.join('out_file', 'energy_ckpt')
force_model_save_dir = os.path.join('out_file', 'force_ckpt')
graph_build_scheme_dir = 'dataset'
app = GatApp(energy_model_save_dir, force_model_save_dir, graph_build_scheme_dir)
graph, info = app.get_graph('POSCAR')
energy = app.get_energy(graph)
forces = app.get_forces(graph)
Geometry optimization
from ase.io import read
from ase.optimize import BFGS
from agat.app import GatAseCalculator
from agat.default_parameters import default_hp_config
poscar = read('POSCAR')
calculator=GatAseCalculator(energy_model_save_dir,
force_model_save_dir,
graph_build_scheme_dir)
poscar = Atoms(poscar, calculator=calculator)
dyn = BFGS(poscar, trajectory='test.traj')
dyn.run(**default_hp_config['opt_config'])
Change log
Please check Change_log.md
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file agat-7.13.1.tar.gz
.
File metadata
- Download URL: agat-7.13.1.tar.gz
- Upload date:
- Size: 60.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 50a622a683b5cfc76be7015a1ecbf41584e0f5c56a8e1a51edb1ac202b3ca2c1 |
|
MD5 | efce5ccb79f1ecdd04b3f3501d82b166 |
|
BLAKE2b-256 | 63e6981c271fe85c93052d7f2545cc80db726e0a76c3f100ebf8a01be6953bac |
File details
Details for the file agat-7.13.1-py3-none-any.whl
.
File metadata
- Download URL: agat-7.13.1-py3-none-any.whl
- Upload date:
- Size: 64.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 370093defc1172e8ee0a84d2ef09bd75f7d9a1450c88f8395dc84e59ef5506a6 |
|
MD5 | 959907582f656c4d1fa5684b6a96aa3d |
|
BLAKE2b-256 | 9d783a440500727bf44d47be64a14680eded4fdcdad297e53ce2e964c798c3cc |