Skip to main content

Atomic Graph ATtention networks for predicting atomic energies and forces.

Project description

AGAT (Atomic Graph ATtention networks)

GitHub Pypi PyPI - Downloads PyPI - Wheel Documentation Status



Model architecture

Using AGAT

The documentation of AGAT API is available.

Installation

Install with conda environment

  • Create a new environment

    conda create -n agat python==3.10
    
  • Activate the environment

    conda activate agat
    
  • Install package

    pip install agat
    
  • Install dgl.
    Please navigate to the Get Started page of dgl. For GPU version:

    conda install -c dglteam/label/cu118 dgl
    

    For now, the cpu version 1.1.2 of dgl has bugs. You can install the cpu version with pip install dgl==1.1.1.

  • Change dgl backend to tensorflow.

    If you still cannot use tensorflow backend dgl, run the following on Linux OS:

    wget https://data.dgl.ai/wheels/cu118/dgl-1.1.1%2Bcu118-cp310-cp310-manylinux1_x86_64.whl
    pip install ./dgl-1.1.1+cu118-cp310-cp310-manylinux1_x86_64.whl
    pip install numpy --upgrade
    
  • For tensorflow of GPU version, if you don't have CUDA and CUDNN on your device, you need to run (Linux OS):

    conda install -c conda-forge cudatoolkit=11.8.0
    pip install nvidia-cudnn-cu11==8.6.0.163
    mkdir -p $CONDA_PREFIX/etc/conda/activate.d
    echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
    echo 'export LD_LIBRARY_PATH=$CUDNN_PATH/lib:$CONDA_PREFIX/lib/:$LD_LIBRARY_PATH' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
    source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
    # Verify install:
    python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
    

    Refer to Install TensorFlow with pip and Tensorflow_GPU for more details (other OSs).

Quick start

Prepare VASP calculations

Collect paths of VASP calculations

  • We provided examples of VASP outputs at VASP_calculations_example.
  • Find all directories containing OUTCAR file:
    find . -name OUTCAR > paths.log
    
  • Remove the string 'OUTCAR' in paths.log.
    sed -i 's/OUTCAR$//g' paths.log
    
  • Specify the absolute paths in paths.log.
    sed -i "s#^.#${PWD}#g" paths.log
    

Build database

from agat.data import AgatDatabase
if __name__ == '__main__':
    ad = AgatDatabase(mode_of_NN='ase_dist', num_of_cores=2)
    ad.build()

Train AGAT model

from agat.model import Train
at = Train()
at.fit_energy_model()
at.fit_force_model()

Model prediction

from agat.app import GatApp
energy_model_save_dir = os.path.join('out_file', 'energy_ckpt')
force_model_save_dir = os.path.join('out_file', 'force_ckpt')
graph_build_scheme_dir = 'dataset'
app = GatApp(energy_model_save_dir, force_model_save_dir, graph_build_scheme_dir)
graph, info = app.get_graph('POSCAR')
energy = app.get_energy(graph)
forces = app.get_forces(graph)

Geometry optimization

from ase.io import read
from ase.optimize import BFGS
from agat.app import GatAseCalculator
from agat.default_parameters import default_hp_config
poscar = read('POSCAR')
calculator=GatAseCalculator(energy_model_save_dir,
                            force_model_save_dir,
                            graph_build_scheme_dir)
poscar = Atoms(poscar, calculator=calculator)
dyn = BFGS(poscar, trajectory='test.traj')
dyn.run(**default_hp_config['opt_config'])

Some default parameters

agat/default_parameters.py; Explanations: docs/sphinx/source/Default parameters.md.

Change log

Please check Change_log.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agat-7.13.2.tar.gz (60.6 kB view details)

Uploaded Source

Built Distribution

agat-7.13.2-py3-none-any.whl (64.9 kB view details)

Uploaded Python 3

File details

Details for the file agat-7.13.2.tar.gz.

File metadata

  • Download URL: agat-7.13.2.tar.gz
  • Upload date:
  • Size: 60.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-7.13.2.tar.gz
Algorithm Hash digest
SHA256 08402da0c26e2d5c0b7612e522d9bc684845382d0ef33734d0bb3aee2271086f
MD5 2b194b18089239601eb9ba1689eaa130
BLAKE2b-256 6886a294938182e25bf8c5664a1055bc04d475eaec70647a8dddd848ff2f2cac

See more details on using hashes here.

File details

Details for the file agat-7.13.2-py3-none-any.whl.

File metadata

  • Download URL: agat-7.13.2-py3-none-any.whl
  • Upload date:
  • Size: 64.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-7.13.2-py3-none-any.whl
Algorithm Hash digest
SHA256 83095ff3eee32e442cefcfec809df51dbeab979f13ea0e3eedbb61d2429cc43b
MD5 5eaf0db62cbe9a137f744be0a9297f03
BLAKE2b-256 9ab8f3f36536828b005f4fd71e16648af3f6dd71e32f3bd99b0c2f4bd1693431

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page