Skip to main content

Atomic Graph ATtention networks for predicting atomic energies and forces.

Project description

AGAT (Atomic Graph ATtention networks)

GitHub Pypi PyPI - Downloads PyPI - Wheel Documentation Status



Model architecture

Using AGAT

The documentation of AGAT API is available.

Installation

Install with conda environment

  • Create a new environment

    conda create -n agat python==3.10
    
  • Activate the environment

    conda activate agat
    
  • Install package

    pip install agat
    
  • Install dgl.
    Please navigate to the Get Started page of dgl. For GPU version:

    conda install -c dglteam/label/cu118 dgl
    

    For now, the cpu version 1.1.2 of dgl has bugs. You can install the cpu version with pip install dgl==1.1.1.

  • Change dgl backend to tensorflow.

    If you still cannot use tensorflow backend dgl, run the following on Linux OS:

    wget https://data.dgl.ai/wheels/cu118/dgl-1.1.1%2Bcu118-cp310-cp310-manylinux1_x86_64.whl
    pip install ./dgl-1.1.1+cu118-cp310-cp310-manylinux1_x86_64.whl
    pip install numpy --upgrade
    
  • For tensorflow of GPU version, if you don't have CUDA and CUDNN on your device, you need to run (Linux OS):

    conda install -c conda-forge cudatoolkit=11.8.0
    pip install nvidia-cudnn-cu11==8.6.0.163
    mkdir -p $CONDA_PREFIX/etc/conda/activate.d
    echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
    echo 'export LD_LIBRARY_PATH=$CUDNN_PATH/lib:$CONDA_PREFIX/lib/:$LD_LIBRARY_PATH' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
    source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
    # Verify install:
    python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
    

    Refer to Install TensorFlow with pip and Tensorflow_GPU for more details (other OSs).

Quick start

Prepare VASP calculations

Collect paths of VASP calculations

  • We provided examples of VASP outputs at VASP_calculations_example.
  • Find all directories containing OUTCAR file:
    find . -name OUTCAR > paths.log
    
  • Remove the string 'OUTCAR' in paths.log.
    sed -i 's/OUTCAR$//g' paths.log
    
  • Specify the absolute paths in paths.log.
    sed -i "s#^.#${PWD}#g" paths.log
    

Build database

from agat.data import AgatDatabase
if __name__ == '__main__':
    ad = AgatDatabase(mode_of_NN='ase_dist', num_of_cores=2)
    ad.build()

Train AGAT model

from agat.model import Train
at = Train()
at.fit_energy_model()
at.fit_force_model()

Model prediction

from agat.app import GatApp
energy_model_save_dir = os.path.join('out_file', 'energy_ckpt')
force_model_save_dir = os.path.join('out_file', 'force_ckpt')
graph_build_scheme_dir = 'dataset'
app = GatApp(energy_model_save_dir, force_model_save_dir, graph_build_scheme_dir)
graph, info = app.get_graph('POSCAR')
energy = app.get_energy(graph)
forces = app.get_forces(graph)

Geometry optimization

from ase.io import read
from ase.optimize import BFGS
from agat.app import GatAseCalculator
from agat.default_parameters import default_hp_config
poscar = read('POSCAR')
calculator=GatAseCalculator(energy_model_save_dir,
                            force_model_save_dir,
                            graph_build_scheme_dir)
poscar = Atoms(poscar, calculator=calculator)
dyn = BFGS(poscar, trajectory='test.traj')
dyn.run(**default_hp_config['opt_config'])

Some default parameters

agat/default_parameters.py; Explanations: docs/sphinx/source/Default parameters.md.

Change log

Please check Change_log.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agat-7.13.3.tar.gz (60.7 kB view details)

Uploaded Source

Built Distribution

agat-7.13.3-py3-none-any.whl (65.0 kB view details)

Uploaded Python 3

File details

Details for the file agat-7.13.3.tar.gz.

File metadata

  • Download URL: agat-7.13.3.tar.gz
  • Upload date:
  • Size: 60.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-7.13.3.tar.gz
Algorithm Hash digest
SHA256 2b681c63456df7c11eab6fee080a3e548c0ffcaa26e9792ef795276d94cab60d
MD5 ac4a9ca6c7106b1633c955b994791cd0
BLAKE2b-256 83b4e0c9bf36160b997475600eaea2812e1c3397d960aaabf44a1cafb13f7b50

See more details on using hashes here.

File details

Details for the file agat-7.13.3-py3-none-any.whl.

File metadata

  • Download URL: agat-7.13.3-py3-none-any.whl
  • Upload date:
  • Size: 65.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-7.13.3-py3-none-any.whl
Algorithm Hash digest
SHA256 4add3609971925fa9236d850fb8a88d36dd6449614937185b64bbe40a4d6b5a3
MD5 d89a6d7ba36bd60924cf6afca332b18d
BLAKE2b-256 ee41a3e82ad9350e5a52fd9ac63aa4d653d03fc56291fb35b3a0482004cb470c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page