Skip to main content

Atomic Graph ATtention networks for predicting atomic energies and forces.

Project description

AGAT (Atomic Graph ATtention networks)

GitHub Pypi PyPI - Downloads PyPI - Wheel Documentation Status



Model architecture

Using AGAT

The documentation of AGAT API is available.

Installation

Install with conda environment

  • Create a new environment

    conda create -n agat python==3.10
    
  • Activate the environment

    conda activate agat
    
  • Install package

    pip install agat
    
  • Install dgl.
    Please navigate to the Get Started page of dgl. For GPU version:

    conda install -c dglteam/label/cu118 dgl
    

    For now, the cpu version 1.1.2 of dgl has bugs. You can install the cpu version with pip install dgl==1.1.1.

  • Change dgl backend to tensorflow.

    If you still cannot use tensorflow backend dgl, run the following on Linux OS:

    wget https://data.dgl.ai/wheels/cu118/dgl-1.1.1%2Bcu118-cp310-cp310-manylinux1_x86_64.whl
    pip install ./dgl-1.1.1+cu118-cp310-cp310-manylinux1_x86_64.whl
    pip install numpy --upgrade
    
  • For tensorflow of GPU version, if you don't have CUDA and CUDNN on your device, you need to run (Linux OS):

    conda install -c conda-forge cudatoolkit=11.8.0
    pip install nvidia-cudnn-cu11==8.6.0.163
    mkdir -p $CONDA_PREFIX/etc/conda/activate.d
    echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
    echo 'export LD_LIBRARY_PATH=$CUDNN_PATH/lib:$CONDA_PREFIX/lib/:$LD_LIBRARY_PATH' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
    source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
    # Verify install:
    python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
    

    Refer to Install TensorFlow with pip and Tensorflow_GPU for more details (other OSs).

Quick start

Prepare VASP calculations

Collect paths of VASP calculations

  • We provided examples of VASP outputs at VASP_calculations_example.
  • Find all directories containing OUTCAR file:
    find . -name OUTCAR > paths.log
    
  • Remove the string 'OUTCAR' in paths.log.
    sed -i 's/OUTCAR$//g' paths.log
    
  • Specify the absolute paths in paths.log.
    sed -i "s#^.#${PWD}#g" paths.log
    

Build database

from agat.data import AgatDatabase
if __name__ == '__main__':
    ad = AgatDatabase(mode_of_NN='ase_dist', num_of_cores=2)
    ad.build()

Train AGAT model

from agat.model import Train
at = Train()
at.fit_energy_model()
at.fit_force_model()

Model prediction

from agat.app import GatApp
energy_model_save_dir = os.path.join('out_file', 'energy_ckpt')
force_model_save_dir = os.path.join('out_file', 'force_ckpt')
graph_build_scheme_dir = 'dataset'
app = GatApp(energy_model_save_dir, force_model_save_dir, graph_build_scheme_dir)
graph, info = app.get_graph('POSCAR')
energy = app.get_energy(graph)
forces = app.get_forces(graph)

Geometry optimization

from ase.io import read
from ase.optimize import BFGS
from agat.app import GatAseCalculator
from agat.default_parameters import default_hp_config
poscar = read('POSCAR')
calculator=GatAseCalculator(energy_model_save_dir,
                            force_model_save_dir,
                            graph_build_scheme_dir)
poscar = Atoms(poscar, calculator=calculator)
dyn = BFGS(poscar, trajectory='test.traj')
dyn.run(**default_hp_config['opt_config'])

Some default parameters

agat/default_parameters.py; Explanations: docs/sphinx/source/Default parameters.md.

Change log

Please check Change_log.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agat-7.13.4.2.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

agat-7.13.4.2-py3-none-any.whl (70.9 kB view details)

Uploaded Python 3

File details

Details for the file agat-7.13.4.2.tar.gz.

File metadata

  • Download URL: agat-7.13.4.2.tar.gz
  • Upload date:
  • Size: 65.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-7.13.4.2.tar.gz
Algorithm Hash digest
SHA256 de097a73a759bc84b5dfc322d582a9fb43fb7fe040355c9a9f408c1011520c37
MD5 5684956ec9a6d1f503cb48f39c7f2543
BLAKE2b-256 e2281a10a5f36c137ec7d7221c9c3847a87181b13acf9f1a0f4a6d0ee5fba068

See more details on using hashes here.

File details

Details for the file agat-7.13.4.2-py3-none-any.whl.

File metadata

  • Download URL: agat-7.13.4.2-py3-none-any.whl
  • Upload date:
  • Size: 70.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-7.13.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ed3774bf89e670c755e290079872d2da8350dd2e73addf2d8b081e0f7ddaf8a8
MD5 18b6712ad11275f7c5411ef2200d93b9
BLAKE2b-256 a7e2db3b566058a089f37c086a3d7b563432ef53386e2050c4d8f7f0da9a6bed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page