Skip to main content

Atomic Graph ATtention networks for predicting atomic energies and forces.

Project description

AGAT (Atomic Graph ATtention networks)

GitHub Pypi PyPI - Downloads PyPI - Wheel Documentation Status

The PyTorch backend AGAT is available now, try with pip install agat==8.*. For previous version, install with pip install agat==7.*.



Model architecture

Using AGAT

The documentation of AGAT API is available.

Installation

Install with conda environment

  • Create a new environment

    conda create -n agat python==3.10
    
  • Activate the environment

    conda activate agat
    
  • Install PyTorch,
    Navigate to the installation page and choose you platform. For example (GPU):

    conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
    
  • Install dgl.
    Please navigate to the Get Started page of dgl. For example (GPU):

    conda install -c dglteam/label/cu118 dgl
    
  • Install AGAT package

    pip install agat
    
  • Install CUDA and CUDNN [Optional].

    • For HPC, you may load CUDA by checking module av, or you can contact your administrator for help.
    • CUDA Toolkit
    • cuDNN

Quick start

Prepare VASP calculations

Run VASP calculations at this step.

Collect paths of VASP calculations

  • We provided examples of VASP outputs at VASP_calculations_example.
  • Find all directories containing OUTCAR file:
    find . -name OUTCAR > paths.log
    
  • Remove the string 'OUTCAR' in paths.log.
    sed -i 's/OUTCAR$//g' paths.log
    
  • Specify the absolute paths in paths.log.
    sed -i "s#^.#${PWD}#g" paths.log
    

Build database

from agat.data import BuildDatabase
if __name__ == '__main__':
    database = BuildDatabase(mode_of_NN='ase_dist', num_of_cores=16)
    database.build()

Train AGAT model

from agat.model import Fit
f = Fit()
f.fit()

Application (geometry optimization)

from ase.optimize import BFGS
from agat.app import AgatCalculator

model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'

atoms = read('POSCAR')
calculator=AgatCalculator(model_save_dir,
                          graph_build_scheme_dir)
atoms = Atoms(atoms, calculator=calculator)
dyn = BFGS(atoms, trajectory='test.traj')
dyn.run(fmax=0.05)

Application (high-throughput prediction)

from agat.app.cata import HpAds

model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'
formula='NiCoFePdPt'

ha = HpAds(model_save_dir=model_save_dir, graph_build_scheme_dir=graph_build_scheme_dir)
ha.run(formula=formula)

For more custom manipulations, see our documentation page.

Documentation Status

Some default parameters

agat/default_parameters.py; Explanations: docs/sphinx/source/Default parameters.md.

Change log

Please check Change_log.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agat-8.0.1.tar.gz (61.4 kB view details)

Uploaded Source

Built Distribution

agat-8.0.1-py3-none-any.whl (65.6 kB view details)

Uploaded Python 3

File details

Details for the file agat-8.0.1.tar.gz.

File metadata

  • Download URL: agat-8.0.1.tar.gz
  • Upload date:
  • Size: 61.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-8.0.1.tar.gz
Algorithm Hash digest
SHA256 f96b4856d7f2fcc563351031e605ff8f261e1ddb6ca21a2718f21bed90b5c33f
MD5 b35a832d4cdb62c37b906c292d643bcb
BLAKE2b-256 e6b93586953dd542cf19c51baeeb5a9c2d5985419a329d18846deedf4058cd81

See more details on using hashes here.

File details

Details for the file agat-8.0.1-py3-none-any.whl.

File metadata

  • Download URL: agat-8.0.1-py3-none-any.whl
  • Upload date:
  • Size: 65.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-8.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f89d7bb36811a51694b4a2d23d8ccd5ff25e56454fa24dd65e043abb829469c6
MD5 44b9f8e56a9ac9be2f599799efe3afdd
BLAKE2b-256 a7630d9921c611b198ef8da3a24b7ddf666bd536017fe158072372a2574276d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page