Atomic Graph ATtention networks for predicting atomic energies and forces.
Project description
AGAT (Atomic Graph ATtention networks)
The PyTorch backend AGAT is available now, try with pip install agat==8.*
. For previous version, install with pip install agat==7.*
.
Using AGAT
The documentation of AGAT API is available.
Installation
Install with conda environment
-
Create a new environment
conda create -n agat python==3.10
-
Activate the environment
conda activate agat
-
Install PyTorch,
Navigate to the installation page and choose you platform. For example (GPU):conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
-
Install dgl.
Please navigate to the Get Started page of dgl. For example (GPU):conda install -c dglteam/label/cu118 dgl
-
Install AGAT package
pip install agat
-
Install CUDA and CUDNN [Optional].
- For HPC, you may load CUDA by checking
module av
, or you can contact your administrator for help. - CUDA Toolkit
- cuDNN
- For HPC, you may load CUDA by checking
Quick start
Prepare VASP calculations
Run VASP calculations at this step.
Collect paths of VASP calculations
- We provided examples of VASP outputs at VASP_calculations_example.
- Find all directories containing
OUTCAR
file:find . -name OUTCAR > paths.log
- Remove the string 'OUTCAR' in
paths.log
.sed -i 's/OUTCAR$//g' paths.log
- Specify the absolute paths in
paths.log
.sed -i "s#^.#${PWD}#g" paths.log
Build database
from agat.data import BuildDatabase
if __name__ == '__main__':
database = BuildDatabase(mode_of_NN='ase_dist', num_of_cores=16)
database.build()
Train AGAT model
from agat.model import Fit
f = Fit()
f.fit()
Application (geometry optimization)
from ase.optimize import BFGS
from agat.app import AgatCalculator
from ase.io import read
from ase import Atoms
model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'
atoms = read('POSCAR')
calculator=AgatCalculator(model_save_dir,
graph_build_scheme_dir)
atoms = Atoms(atoms, calculator=calculator)
dyn = BFGS(atoms, trajectory='test.traj')
dyn.run(fmax=0.05)
Application (high-throughput prediction)
from agat.app.cata import HpAds
model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'
formula='NiCoFePdPt'
ha = HpAds(model_save_dir=model_save_dir, graph_build_scheme_dir=graph_build_scheme_dir)
ha.run(formula=formula)
For more custom manipulations, see our documentation page.
Some default parameters
agat/default_parameters.py; Explanations: docs/sphinx/source/Default parameters.md.
Change log
Please check Change_log.md
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file agat-8.0.2.tar.gz
.
File metadata
- Download URL: agat-8.0.2.tar.gz
- Upload date:
- Size: 62.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5d5ec9f61f3f21ddc7310c723fbe57b6c3c5d5cb61db38fb9c6c8173847e7e0b |
|
MD5 | e319f85da4ff2088baf30f9f56663372 |
|
BLAKE2b-256 | e09a13257b1595a3f44d8273328044620a0971ae7720939ed857073c69a944f1 |
File details
Details for the file agat-8.0.2-py3-none-any.whl
.
File metadata
- Download URL: agat-8.0.2-py3-none-any.whl
- Upload date:
- Size: 66.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 58c960f9f4672d7c5e9ad1500179b743a8d47aebf138d2ca3d983ef94368ae94 |
|
MD5 | 85f34701b31d9357ced4ecbdb2cf1fd2 |
|
BLAKE2b-256 | 2f716d082057a50d9d43060293617e4b10d14d02558ce18421f0312fdb4f6733 |