Skip to main content

Atomic Graph ATtention networks for predicting atomic energies and forces.

Project description

AGAT (Atomic Graph ATtention networks)

GitHub Pypi PyPI - Downloads PyPI - Wheel Documentation Status

The PyTorch backend AGAT is available now, try with pip install agat==8.*. For previous version, install with pip install agat==7.*.



Model architecture

Using AGAT

The documentation of AGAT API is available.

Installation

Install with conda environment

  • Create a new environment

    conda create -n agat python==3.10
    
  • Activate the environment

    conda activate agat
    
  • Install PyTorch,
    Navigate to the installation page and choose you platform. For example (GPU):

    conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
    
  • Install dgl.
    Please navigate to the Get Started page of dgl. For example (GPU):

    conda install -c dglteam/label/cu118 dgl
    
  • Install AGAT package

    pip install agat
    
  • Install CUDA and CUDNN [Optional].

    • For HPC, you may load CUDA by checking module av, or you can contact your administrator for help.
    • CUDA Toolkit
    • cuDNN

Quick start

Prepare VASP calculations

Run VASP calculations at this step.

Collect paths of VASP calculations

  • We provided examples of VASP outputs at VASP_calculations_example.
  • Find all directories containing OUTCAR file:
    find . -name OUTCAR > paths.log
    
  • Remove the string 'OUTCAR' in paths.log.
    sed -i 's/OUTCAR$//g' paths.log
    
  • Specify the absolute paths in paths.log.
    sed -i "s#^.#${PWD}#g" paths.log
    

Build database

from agat.data import BuildDatabase
if __name__ == '__main__':
    database = BuildDatabase(mode_of_NN='ase_dist', num_of_cores=16)
    database.build()

Train AGAT model

from agat.model import Fit
f = Fit()
f.fit()

Application (geometry optimization)

from ase.optimize import BFGS
from agat.app import AgatCalculator
from ase.io import read
from ase import Atoms

model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'

atoms = read('POSCAR')
calculator=AgatCalculator(model_save_dir,
                          graph_build_scheme_dir)
atoms = Atoms(atoms, calculator=calculator)
dyn = BFGS(atoms, trajectory='test.traj')
dyn.run(fmax=0.05)

Application (high-throughput prediction)

from agat.app.cata import HpAds

model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'
formula='NiCoFePdPt'

ha = HpAds(model_save_dir=model_save_dir, graph_build_scheme_dir=graph_build_scheme_dir)
ha.run(formula=formula)

For more custom manipulations, see our documentation page.

Documentation Status

Some default parameters

agat/default_parameters.py; Explanations: docs/sphinx/source/Default parameters.md.

Change log

Please check Change_log.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agat-8.0.2.tar.gz (62.1 kB view details)

Uploaded Source

Built Distribution

agat-8.0.2-py3-none-any.whl (66.3 kB view details)

Uploaded Python 3

File details

Details for the file agat-8.0.2.tar.gz.

File metadata

  • Download URL: agat-8.0.2.tar.gz
  • Upload date:
  • Size: 62.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-8.0.2.tar.gz
Algorithm Hash digest
SHA256 5d5ec9f61f3f21ddc7310c723fbe57b6c3c5d5cb61db38fb9c6c8173847e7e0b
MD5 e319f85da4ff2088baf30f9f56663372
BLAKE2b-256 e09a13257b1595a3f44d8273328044620a0971ae7720939ed857073c69a944f1

See more details on using hashes here.

File details

Details for the file agat-8.0.2-py3-none-any.whl.

File metadata

  • Download URL: agat-8.0.2-py3-none-any.whl
  • Upload date:
  • Size: 66.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-8.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 58c960f9f4672d7c5e9ad1500179b743a8d47aebf138d2ca3d983ef94368ae94
MD5 85f34701b31d9357ced4ecbdb2cf1fd2
BLAKE2b-256 2f716d082057a50d9d43060293617e4b10d14d02558ce18421f0312fdb4f6733

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page