Skip to main content

Atomic Graph ATtention networks for predicting atomic energies and forces.

Project description

AGAT (Atomic Graph ATtention networks)

GitHub Pypi PyPI - Downloads PyPI - Wheel

The PyTorch backend AGAT is available now, try with pip install agat==8.*. For previous version, install with pip install agat==7.*.



Model architecture

Using AGAT

The documentation of AGAT API is available.

Installation

Install with conda environment

  • Create a new environment

    conda create -n agat python==3.10
    
  • Activate the environment

    conda activate agat
    
  • Install PyTorch,
    Navigate to the installation page and choose you platform. For example (GPU):

    conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
    
  • Install dgl.
    Please navigate to the Get Started page of dgl. For example (GPU):

    conda install -c dglteam/label/cu118 dgl
    
  • Install AGAT package

    pip install agat
    
  • Install CUDA and CUDNN [Optional].

    • For HPC, you may load CUDA by checking module av, or you can contact your administrator for help.
    • CUDA Toolkit
    • cuDNN

Quick start

Prepare VASP calculations

Run VASP calculations at this step.

Collect paths of VASP calculations

  • We provided examples of VASP outputs at VASP_calculations_example.
  • Find all directories containing OUTCAR file:
    find . -name OUTCAR > paths.log
    
  • Remove the string 'OUTCAR' in paths.log.
    sed -i 's/OUTCAR$//g' paths.log
    
  • Specify the absolute paths in paths.log.
    sed -i "s#^.#${PWD}#g" paths.log
    

Build database

from agat.data import BuildDatabase
if __name__ == '__main__':
    database = BuildDatabase(mode_of_NN='ase_dist', num_of_cores=16)
    database.build()

Train AGAT model

from agat.model import Fit
f = Fit()
f.fit()

Application (geometry optimization)

from ase.optimize import BFGS
from agat.app import AgatCalculator
from ase.io import read
from ase import Atoms

model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'

atoms = read('POSCAR')
calculator=AgatCalculator(model_save_dir,
                          graph_build_scheme_dir)
atoms = Atoms(atoms, calculator=calculator)
dyn = BFGS(atoms, trajectory='test.traj')
dyn.run(fmax=0.05)

Application (high-throughput prediction)

from agat.app.cata import HpAds

model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'
formula='NiCoFePdPt'

ha = HpAds(model_save_dir=model_save_dir, graph_build_scheme_dir=graph_build_scheme_dir)
ha.run(formula=formula)

For more custom manipulations, see our documentation page.

Some default parameters

agat/default_parameters.py; Explanations: docs/sphinx/source/Default parameters.md.

Change log

Please check Change_log.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agat-8.0.5.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

agat-8.0.5-py3-none-any.whl (65.8 kB view details)

Uploaded Python 3

File details

Details for the file agat-8.0.5.tar.gz.

File metadata

  • Download URL: agat-8.0.5.tar.gz
  • Upload date:
  • Size: 58.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for agat-8.0.5.tar.gz
Algorithm Hash digest
SHA256 c6bfa26c96485efa961d1f3641f879c67395dc6620bf0a07caa8c34f1f9b3ea1
MD5 cc9bd5fa0184e375b39425500a285ee2
BLAKE2b-256 8447a63cb535c02bdbf5868f54f760047ee1ac950dcfa77fe87ad8cfb07bde91

See more details on using hashes here.

File details

Details for the file agat-8.0.5-py3-none-any.whl.

File metadata

  • Download URL: agat-8.0.5-py3-none-any.whl
  • Upload date:
  • Size: 65.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for agat-8.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 d6958e00725bc08913636906bde40a4f1bd21d88666c14244e831c626fbabdc2
MD5 705090fa83be2e3d74d4530c1f47547c
BLAKE2b-256 a7b52cb94413f22a83662fc5d5782fc177be4d77b455a295b88335e20c180bf9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page