Skip to main content

AgeFreighter is a Python package that helps you to create a graph database using Azure Database for PostgreSQL.

Project description

AGEFreighter

a Python package that helps you to create a graph database using Azure Database for PostgreSQL.

Apache AGE™ is a PostgreSQL Graph database compatible with PostgreSQL's distributed assets and leverages graph data structures to analyze and use relationships and patterns in data.

Azure Database for PostgreSQL is a managed database service that is based on the open-source Postgres database engine.

Introducing support for Graph data in Azure Database for PostgreSQL (Preview).

Features

  • Asynchronous connection pool support for psycopg PostgreSQL driver
  • 'direct_load' option for loading data directly into the graph for better performance
  • 'COPY' protocol support for loading data into the graph for much better performance

Install

pip install agefreighter

Prerequisites

  • over Python 3.11
  • This module runs on psycopg and psycopg_pool
  • Enable the Apache AGE extension in your Azure Database for PostgreSQL instance. Login Azure Portal, go to 'server parameters' blade, and check 'AGE" on within 'azure.extensions' and 'shared_preload_libraries' parameters. See, above blog post for more information.
  • Load the AGE extension in your PostgreSQL database.
CREATE EXTENSION IF NOT EXISTS age CASCADE;

Usage

import os

import asyncio
from agefreighter import AgeFreighter

# file downloaded from https://www.kaggle.com/datasets/darinhawley/imdb-films-by-actor-for-10k-actors
# actorfilms.csv: Actor,ActorID,Film,Year,Votes,Rating,FilmID
# # of actors: 9,623, # of films: 44,456, # of edges: 191,873
async def test_loadFromSingleCSV(af: AgeFreighter, chunk_size: int = 96, direct_loading: bool = False) -> None:
    await af.loadFromSingleCSV(
        graph_name="actorfilms",
        csv="actorfilms.csv",
        start_vertex_type="Actor",
        start_id="ActorID",
        start_properties=["Actor"],
        edge_label="ACTED_IN",
        end_vertex_type="Film",
        end_id="FilmID",
        end_properties=["Film", "Year", "Votes", "Rating"],
        chunk_size=chunk_size,
        direct_loading = direct_loading,
        drop_graph = True
    )

# cities.csv: id,name,state_id,state_code,country_id,country_code,latitude,longitude
# continents.csv: id,name,iso3,iso2,numeric_code,phone_code,capital,currency,currency_symbol,tld,native,region,subregion,latitude,longitude,emoji,emojiU
# edges.csv: start_id,start_vertex_type,end_id,end_vertex_type
# # of countries: 53, # of cities: 72,485, # of edges: 72,485
async def test_loadFromCSVs(af: AgeFreighter, chunk_size: int = 96, direct_loading: bool = False) -> None:
    await af.loadFromCSVs(
        graph_name="cities_countries",
        vertex_csvs=["countries.csv", "cities.csv"],
        vertex_labels=["Country", "City"],
        edge_csvs=["edges.csv"],
        edge_labels=["has_city"],
        chunk_size=chunk_size,
        direct_loading = direct_loading,
        drop_graph = True
    )

async def test_copyFromSingleCSV(af: AgeFreighter, chunk_size: int = 96) -> None:
    await af.loadFromSingleCSV(
        graph_name="actorfilms",
        csv="actorfilms.csv",
        start_vertex_type="Actor",
        start_id="ActorID",
        start_properties=["Actor"],
        edge_label="ACTED_IN",
        end_vertex_type="Film",
        end_id="FilmID",
        end_properties=["Film", "Year", "Votes", "Rating"],
        chunk_size=chunk_size,
        drop_graph=True,
        use_copy=True,
    )

async def test_copyFromCSVs(af: AgeFreighter, chunk_size: int = 96) -> None:
    await af.loadFromCSVs(
        graph_name="cities_countries",
        vertex_csvs=["countries.csv", "cities.csv"],
        vertex_labels=["Country", "City"],
        edge_csvs=["edges.csv"],
        edge_labels=["has_city"],
        chunk_size=chunk_size,
        drop_graph=True,
        use_copy=True,
    )

async def main() -> None:
    # export PG_CONNECTION_STRING="host=your_server.postgres.database.azure.com port=5432 dbname=postgres user=account password=your_password"
    try:
        connection_string = os.environ["PG_CONNECTION_STRING"]
    except KeyError:
        print("Please set the environment variable PG_CONNECTION_STRING")
        return

    af = await AgeFreighter.connect(dsn = connection_string, max_connections = 64)
    try:
        # Strongly reccomended to define chunk_size with your data and server before loading large amount of data
        # Especially, the number of properties in the vertex affects the complecity of the query
        # Due to asynchronous nature of the library, the duration for loading data is not linear to the number of rows
        #
        # Addition to the chunk_size, max_wal_size and checkpoint_timeout in the postgresql.conf should be considered
        chunk_size = 64
        await test_loadFromSingleCSV(af, chunk_size = chunk_size, direct_loading = False)
        await asyncio.sleep(10)
        await test_loadFromSingleCSV(af, chunk_size = chunk_size, direct_loading = True)
        await asyncio.sleep(10)
        await test_copyFromSingleCSV(af, chunk_size = chunk_size)
        await asyncio.sleep(10)

        await test_loadFromCSVs(af, chunk_size = chunk_size, direct_loading = False)
        await asyncio.sleep(10)
        await test_loadFromCSVs(af, chunk_size = chunk_size, direct_loading = True)
        await asyncio.sleep(10)
        await test_copyFromCSVs(af, chunk_size = chunk_size)
        await asyncio.sleep(10)

    finally:
        await af.pool.close()

if __name__ == "__main__":
    asyncio.run(main())

Test & Samples

export PG_CONNECTION_STRING="host=your_server.postgres.database.azure.com port=5432 dbname=postgres user=account password=your_password"
python3 tests/test_agefreighter.py

For more information about Apache AGE

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agefreighter-0.1.2.tar.gz (9.7 kB view details)

Uploaded Source

Built Distribution

agefreighter-0.1.2-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file agefreighter-0.1.2.tar.gz.

File metadata

  • Download URL: agefreighter-0.1.2.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.5.1

File hashes

Hashes for agefreighter-0.1.2.tar.gz
Algorithm Hash digest
SHA256 dae58840f611cb57bdb7b69952477c8fed95309c1b4770d7ea1c4377ef586498
MD5 5ff1e6d0ef4ea11277c9a993d937c63b
BLAKE2b-256 30e5f880a5a7d0906677165febb4abd67be3c323df0901490692aa4577666b67

See more details on using hashes here.

File details

Details for the file agefreighter-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for agefreighter-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 620049ccbb9fd58e8ca6054c78c36ef40d4de00b0b36d017bdae810a2d330cbd
MD5 0eac480c7ba5198d4ed6d3cfa0a55d5a
BLAKE2b-256 276c145ff42f38f9b67b4b1e330fc041a9f5d008370980a129686d8229a592be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page