AgeFreighter is a Python package that helps you to create a graph database using Azure Database for PostgreSQL.
Project description
AGEFreighter
a Python package that helps you to create a graph database using Azure Database for PostgreSQL.
Apache AGE™ is a PostgreSQL Graph database compatible with PostgreSQL's distributed assets and leverages graph data structures to analyze and use relationships and patterns in data.
Azure Database for PostgreSQL is a managed database service that is based on the open-source Postgres database engine.
Introducing support for Graph data in Azure Database for PostgreSQL (Preview).
Features
- Asynchronous connection pool support for psycopg PostgreSQL driver
- 'direct_load' option for loading data directly into the graph for better performance
- 'COPY' protocol support for loading data into the graph for much better performance
Install
pip install agefreighter
Prerequisites
- over Python 3.11
- This module runs on psycopg and psycopg_pool
- Enable the Apache AGE extension in your Azure Database for PostgreSQL instance. Login Azure Portal, go to 'server parameters' blade, and check 'AGE" on within 'azure.extensions' and 'shared_preload_libraries' parameters. See, above blog post for more information.
- Load the AGE extension in your PostgreSQL database.
CREATE EXTENSION IF NOT EXISTS age CASCADE;
Usage
import os
import asyncio
from agefreighter import AgeFreighter
# file downloaded from https://www.kaggle.com/datasets/darinhawley/imdb-films-by-actor-for-10k-actors
# actorfilms.csv: Actor,ActorID,Film,Year,Votes,Rating,FilmID
# # of actors: 9,623, # of films: 44,456, # of edges: 191,873
async def test_loadFromSingleCSV(af: AgeFreighter, chunk_size: int = 96, direct_loading: bool = False) -> None:
await af.loadFromSingleCSV(
graph_name="actorfilms",
csv="actorfilms.csv",
start_vertex_type="Actor",
start_id="ActorID",
start_properties=["Actor"],
edge_label="ACTED_IN",
end_vertex_type="Film",
end_id="FilmID",
end_properties=["Film", "Year", "Votes", "Rating"],
chunk_size=chunk_size,
direct_loading = direct_loading,
drop_graph = True
)
# cities.csv: id,name,state_id,state_code,country_id,country_code,latitude,longitude
# continents.csv: id,name,iso3,iso2,numeric_code,phone_code,capital,currency,currency_symbol,tld,native,region,subregion,latitude,longitude,emoji,emojiU
# edges.csv: start_id,start_vertex_type,end_id,end_vertex_type
# # of countries: 53, # of cities: 72,485, # of edges: 72,485
async def test_loadFromCSVs(af: AgeFreighter, chunk_size: int = 96, direct_loading: bool = False) -> None:
await af.loadFromCSVs(
graph_name="cities_countries",
vertex_csvs=["countries.csv", "cities.csv"],
vertex_labels=["Country", "City"],
edge_csvs=["edges.csv"],
edge_labels=["has_city"],
chunk_size=chunk_size,
direct_loading = direct_loading,
drop_graph = True
)
async def test_copyFromSingleCSV(af: AgeFreighter, chunk_size: int = 96) -> None:
await af.loadFromSingleCSV(
graph_name="actorfilms",
csv="actorfilms.csv",
start_vertex_type="Actor",
start_id="ActorID",
start_properties=["Actor"],
edge_label="ACTED_IN",
end_vertex_type="Film",
end_id="FilmID",
end_properties=["Film", "Year", "Votes", "Rating"],
chunk_size=chunk_size,
drop_graph=True,
use_copy=True,
)
async def test_copyFromCSVs(af: AgeFreighter, chunk_size: int = 96) -> None:
await af.loadFromCSVs(
graph_name="cities_countries",
vertex_csvs=["countries.csv", "cities.csv"],
vertex_labels=["Country", "City"],
edge_csvs=["edges.csv"],
edge_labels=["has_city"],
chunk_size=chunk_size,
drop_graph=True,
use_copy=True,
)
async def main() -> None:
# export PG_CONNECTION_STRING="host=your_server.postgres.database.azure.com port=5432 dbname=postgres user=account password=your_password"
try:
connection_string = os.environ["PG_CONNECTION_STRING"]
except KeyError:
print("Please set the environment variable PG_CONNECTION_STRING")
return
af = await AgeFreighter.connect(dsn = connection_string, max_connections = 64)
try:
# Strongly reccomended to define chunk_size with your data and server before loading large amount of data
# Especially, the number of properties in the vertex affects the complecity of the query
# Due to asynchronous nature of the library, the duration for loading data is not linear to the number of rows
#
# Addition to the chunk_size, max_wal_size and checkpoint_timeout in the postgresql.conf should be considered
chunk_size = 64
await test_loadFromSingleCSV(af, chunk_size = chunk_size, direct_loading = False)
await asyncio.sleep(10)
await test_loadFromSingleCSV(af, chunk_size = chunk_size, direct_loading = True)
await asyncio.sleep(10)
await test_copyFromSingleCSV(af, chunk_size = chunk_size)
await asyncio.sleep(10)
await test_loadFromCSVs(af, chunk_size = chunk_size, direct_loading = False)
await asyncio.sleep(10)
await test_loadFromCSVs(af, chunk_size = chunk_size, direct_loading = True)
await asyncio.sleep(10)
await test_copyFromCSVs(af, chunk_size = chunk_size)
await asyncio.sleep(10)
finally:
await af.pool.close()
if __name__ == "__main__":
asyncio.run(main())
Test & Samples
export PG_CONNECTION_STRING="host=your_server.postgres.database.azure.com port=5432 dbname=postgres user=account password=your_password"
python3 tests/test_agefreighter.py
For more information about Apache AGE
- Apache AGE : https://age.apache.org/
- GitHub : https://github.com/apache/age
- Document : https://age.apache.org/age-manual/master/index.html
License
MIT License
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file agefreighter-0.1.3.tar.gz
.
File metadata
- Download URL: agefreighter-0.1.3.tar.gz
- Upload date:
- Size: 9.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: uv/0.5.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1f55d941c59f8ee7e29e5ff1b3535a188bb5ca7263e088c391a30d0936e3ab6b |
|
MD5 | fd57502bdf3b290af965d6c8637f6929 |
|
BLAKE2b-256 | 9a9b3047620acad6dddc8a9988d2727a217dac85c16e4cefcee2b8f6dade2db0 |
File details
Details for the file agefreighter-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: agefreighter-0.1.3-py3-none-any.whl
- Upload date:
- Size: 8.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: uv/0.5.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b30e7b187ca435d6423b3985588d329123188e949a62329bfca77f0bd4250323 |
|
MD5 | aa4b33f8a69c763c9b39439782b6a00c |
|
BLAKE2b-256 | 4268c2cf2ff14fe6dbc04e0e7877cc56f781b7aba7e908c05bd1075f027d6b4d |