Skip to main content

AgeFreighter is a Python package that helps you to create a graph database using Azure Database for PostgreSQL.

Project description

AGEFreighter

a Python package that helps you to create a graph database using Azure Database for PostgreSQL.

Apache AGE™ is a PostgreSQL Graph database compatible with PostgreSQL's distributed assets and leverages graph data structures to analyze and use relationships and patterns in data.

Azure Database for PostgreSQL is a managed database service that is based on the open-source Postgres database engine.

Introducing support for Graph data in Azure Database for PostgreSQL (Preview).

Features

  • Asynchronous connection pool support for psycopg PostgreSQL driver
  • 'direct_load' option for loading data directly into the graph for better performance
  • 'COPY' protocol support for loading data into the graph for much better performance

Install

pip install agefreighter

Prerequisites

  • over Python 3.11
  • This module runs on psycopg and psycopg_pool
  • Enable the Apache AGE extension in your Azure Database for PostgreSQL instance. Login Azure Portal, go to 'server parameters' blade, and check 'AGE" on within 'azure.extensions' and 'shared_preload_libraries' parameters. See, above blog post for more information.
  • Load the AGE extension in your PostgreSQL database.
CREATE EXTENSION IF NOT EXISTS age CASCADE;

Usage

import os

import asyncio
from agefreighter import AgeFreighter

# file downloaded from https://www.kaggle.com/datasets/darinhawley/imdb-films-by-actor-for-10k-actors
# actorfilms.csv: Actor,ActorID,Film,Year,Votes,Rating,FilmID
# # of actors: 9,623, # of films: 44,456, # of edges: 191,873
async def test_loadFromSingleCSV(af: AgeFreighter, chunk_size: int = 96, direct_loading: bool = False) -> None:
    await af.loadFromSingleCSV(
        graph_name="actorfilms",
        csv="actorfilms.csv",
        start_vertex_type="Actor",
        start_id="ActorID",
        start_properties=["Actor"],
        edge_label="ACTED_IN",
        end_vertex_type="Film",
        end_id="FilmID",
        end_properties=["Film", "Year", "Votes", "Rating"],
        chunk_size=chunk_size,
        direct_loading = direct_loading,
        drop_graph = True
    )

# cities.csv: id,name,state_id,state_code,country_id,country_code,latitude,longitude
# continents.csv: id,name,iso3,iso2,numeric_code,phone_code,capital,currency,currency_symbol,tld,native,region,subregion,latitude,longitude,emoji,emojiU
# edges.csv: start_id,start_vertex_type,end_id,end_vertex_type
# # of countries: 53, # of cities: 72,485, # of edges: 72,485
async def test_loadFromCSVs(af: AgeFreighter, chunk_size: int = 96, direct_loading: bool = False) -> None:
    await af.loadFromCSVs(
        graph_name="cities_countries",
        vertex_csvs=["countries.csv", "cities.csv"],
        vertex_labels=["Country", "City"],
        edge_csvs=["edges.csv"],
        edge_labels=["has_city"],
        chunk_size=chunk_size,
        direct_loading = direct_loading,
        drop_graph = True
    )

async def test_copyFromSingleCSV(af: AgeFreighter, chunk_size: int = 96) -> None:
    await af.loadFromSingleCSV(
        graph_name="actorfilms",
        csv="actorfilms.csv",
        start_vertex_type="Actor",
        start_id="ActorID",
        start_properties=["Actor"],
        edge_label="ACTED_IN",
        end_vertex_type="Film",
        end_id="FilmID",
        end_properties=["Film", "Year", "Votes", "Rating"],
        chunk_size=chunk_size,
        drop_graph=True,
        use_copy=True,
    )

async def test_copyFromCSVs(af: AgeFreighter, chunk_size: int = 96) -> None:
    await af.loadFromCSVs(
        graph_name="cities_countries",
        vertex_csvs=["countries.csv", "cities.csv"],
        vertex_labels=["Country", "City"],
        edge_csvs=["edges.csv"],
        edge_labels=["has_city"],
        chunk_size=chunk_size,
        drop_graph=True,
        use_copy=True,
    )

async def main() -> None:
    # export PG_CONNECTION_STRING="host=your_server.postgres.database.azure.com port=5432 dbname=postgres user=account password=your_password"
    try:
        connection_string = os.environ["PG_CONNECTION_STRING"]
    except KeyError:
        print("Please set the environment variable PG_CONNECTION_STRING")
        return

    af = await AgeFreighter.connect(dsn = connection_string, max_connections = 64)
    try:
        # Strongly reccomended to define chunk_size with your data and server before loading large amount of data
        # Especially, the number of properties in the vertex affects the complecity of the query
        # Due to asynchronous nature of the library, the duration for loading data is not linear to the number of rows
        #
        # Addition to the chunk_size, max_wal_size and checkpoint_timeout in the postgresql.conf should be considered
        chunk_size = 64
        await test_loadFromSingleCSV(af, chunk_size = chunk_size, direct_loading = False)
        await asyncio.sleep(10)
        await test_loadFromSingleCSV(af, chunk_size = chunk_size, direct_loading = True)
        await asyncio.sleep(10)
        await test_copyFromSingleCSV(af, chunk_size = chunk_size)
        await asyncio.sleep(10)

        await test_loadFromCSVs(af, chunk_size = chunk_size, direct_loading = False)
        await asyncio.sleep(10)
        await test_loadFromCSVs(af, chunk_size = chunk_size, direct_loading = True)
        await asyncio.sleep(10)
        await test_copyFromCSVs(af, chunk_size = chunk_size)
        await asyncio.sleep(10)

    finally:
        await af.pool.close()

if __name__ == "__main__":
    asyncio.run(main())

Test & Samples

export PG_CONNECTION_STRING="host=your_server.postgres.database.azure.com port=5432 dbname=postgres user=account password=your_password"
python3 tests/test_agefreighter.py

For more information about Apache AGE

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agefreighter-0.1.3.tar.gz (9.8 kB view details)

Uploaded Source

Built Distribution

agefreighter-0.1.3-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file agefreighter-0.1.3.tar.gz.

File metadata

  • Download URL: agefreighter-0.1.3.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.5.1

File hashes

Hashes for agefreighter-0.1.3.tar.gz
Algorithm Hash digest
SHA256 1f55d941c59f8ee7e29e5ff1b3535a188bb5ca7263e088c391a30d0936e3ab6b
MD5 fd57502bdf3b290af965d6c8637f6929
BLAKE2b-256 9a9b3047620acad6dddc8a9988d2727a217dac85c16e4cefcee2b8f6dade2db0

See more details on using hashes here.

File details

Details for the file agefreighter-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for agefreighter-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 b30e7b187ca435d6423b3985588d329123188e949a62329bfca77f0bd4250323
MD5 aa4b33f8a69c763c9b39439782b6a00c
BLAKE2b-256 4268c2cf2ff14fe6dbc04e0e7877cc56f781b7aba7e908c05bd1075f027d6b4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page