AgeFreighter is a Python package that helps you to create a graph database using Azure Database for PostgreSQL.
Project description
AGEFreighter
a Python package that helps you to create a graph database using Azure Database for PostgreSQL.
Apache AGE™ is a PostgreSQL Graph database compatible with PostgreSQL's distributed assets and leverages graph data structures to analyze and use relationships and patterns in data.
Azure Database for PostgreSQL is a managed database service that is based on the open-source Postgres database engine.
Introducing support for Graph data in Azure Database for PostgreSQL (Preview).
Features
- Asynchronous connection pool support for psycopg PostgreSQL driver
- 'direct_loading' option for loading data directly into the graph. If 'direct_loading' is True, the data is loaded into the graph using the 'INSERT' statement, not Cypher queries.
- 'COPY' protocol support for loading data into the graph. If 'use_copy' is True, the data is loaded into the graph using the 'COPY' protocol.
Functions
- 'loadFromSingleCSV()' expects a single CSV file that contains the data for the graph as a source.
- 'loadFromCSVs()' expects multiple CSV files, two CSV files for vertices and one CSV file for edges as sources.
- 'loadFromNetworkx()' expects a NetworkX graph object as a source.
- 'loadFromNeo4j()' expects a Neo4j as a source.
- 'loadFromPGSQL()' expects a PGSQL as a source.
- 'loadFromParquet()' expects a Parquet file as a source.
- 'loadFromCosmosGremlin()' expects a Cosmos Gremlin API as a source.
- Many more coming soon...
Release Notes
- 0.4.0 : Added 'loadFromCosmosGremlin()' function.
- 0.4.1 : Changed base Python version to 3.9 to run on Azure Cloud Shell and Databricks 15.4ML.
Install
pip install agefreighter
Prerequisites
- over Python 3.10
- This module runs on psycopg and psycopg_pool
- Enable the Apache AGE extension in your Azure Database for PostgreSQL instance. Login Azure Portal, go to 'server parameters' blade, and check 'AGE" on within 'azure.extensions' and 'shared_preload_libraries' parameters. See, above blog post for more information.
- Load the AGE extension in your PostgreSQL database.
CREATE EXTENSION IF NOT EXISTS age CASCADE;
Usage
See, tests/test_agefreighter.py for more details.
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import sys
import time
sys.path.append(os.path.join(os.path.dirname(__file__), "../src/"))
import asyncio
from agefreighter import AgeFreighter
import networkx as nx
import pandas as pd
import nest_asyncio
nest_asyncio.apply()
async def test_loadFromSingleCSV(
af: AgeFreighter,
chunk_size: int = 96,
direct_loading: bool = False,
use_copy: bool = False,
) -> None:
"""
Test for loadFromSingleCSV()
file downloaded from https://www.kaggle.com/datasets/darinhawley/imdb-films-by-actor-for-10k-actors
actorfilms.csv: Actor,ActorID,Film,Year,Votes,Rating,FilmID
# of actors: 9,623, # of films: 44,456, # of edges: 191,873
"""
start_time = time.time()
await af.loadFromSingleCSV(
graph_name="ActorFilms",
csv="../data/actorfilms.csv",
start_v_label="Actor",
start_id="ActorID",
start_props=["Actor"],
edge_type="ACTED_IN",
end_v_label="Film",
end_id="FilmID",
end_props=["Film", "Year", "Votes", "Rating"],
chunk_size=chunk_size,
direct_loading=direct_loading,
drop_graph=True,
use_copy=use_copy,
)
print(
f"test_loadFromSingleCSV : time, {time.time() - start_time:.2f}, chunk_size: {chunk_size}, direct_loading: {direct_loading}, use_copy: {use_copy}"
)
async def test_loadFromCSVs(
af: AgeFreighter,
chunk_size: int = 96,
direct_loading: bool = False,
use_copy: bool = False,
) -> None:
"""
Test for loadFromCSVs()
cities.csv: id,name,state_id,state_code,country_id,country_code,latitude,longitude
countries.csv: id,name,iso3,iso2,numeric_code,phone_code,capital,currency,currency_symbol,tld,native,region,subregion,latitude,longitude,emoji,emojiU
edges.csv: start_id,start_vertex_type,end_id,end_vertex_type
# of countries: 53, # of cities: 72,485, # of edges: 72,485
"""
start_time = time.time()
await af.loadFromCSVs(
graph_name="cities_countries",
vertex_csvs=["../data/countries.csv", "../data/cities.csv"],
v_labels=["Country", "City"],
edge_csvs=["../data/edges.csv"],
e_types=["has_city"],
chunk_size=chunk_size,
direct_loading=direct_loading,
drop_graph=True,
use_copy=use_copy,
)
print(
f"test_loadFromCSVs : time, {time.time() - start_time:.2f}, chunk_size: {chunk_size}, direct_loading: {direct_loading}, use_copy: {use_copy}"
)
async def test_loadFrom2CSVs(
af: AgeFreighter,
chunk_size: int = 96,
direct_loading: bool = False,
use_copy: bool = False,
) -> None:
"""
Test for loadFromCSVs()
start and end vertices are in the same csv file
"""
start_time = time.time()
await af.loadFromCSVs(
graph_name="war_btw_countries",
vertex_csvs=["../data/countries.csv"],
v_labels=["Country"],
edge_csvs=["../data/fight_with.csv"],
e_types=["FIGHT_WITH"],
chunk_size=chunk_size,
direct_loading=direct_loading,
drop_graph=True,
use_copy=use_copy,
)
print(
f"test_loadFrom2CSVs : time, {time.time() - start_time:.2f}, chunk_size: {chunk_size}, direct_loading: {direct_loading}, use_copy: {use_copy}"
)
async def test_loadFromNetworkx(
af: AgeFreighter,
chunk_size: int = 96,
direct_loading: bool = False,
use_copy: bool = False,
) -> None:
"""
Test for loadFromNetworkx()
create networkx graph from actorfilms.csv
file downloaded from https://www.kaggle.com/datasets/darinhawley/imdb-films-by-actor-for-10k-actors
after creating networkx graph, load it to the database
"""
df = pd.read_csv("../data/actorfilms.csv")
G = nx.DiGraph()
for name, group in df.groupby("ActorID"):
for idx, row in group.iterrows():
G.add_node(row["ActorID"], label="Actor", name=row["Actor"])
G.add_node(
row["FilmID"],
label="Film",
name=row["Film"],
year=row["Year"],
votes=row["Votes"],
rating=row["Rating"],
)
G.add_edge(row["ActorID"], row["FilmID"], label="ACTED_IN")
start_time = time.time()
await af.loadFromNetworkx(
graph_name="ActorFilms",
networkx_graph=G,
chunk_size=chunk_size,
direct_loading=direct_loading,
drop_graph=True,
use_copy=use_copy,
)
print(
f"test_loadFromNetworkx : time, {time.time() - start_time:.2f}, chunk_size: {chunk_size}, direct_loading: {direct_loading}, use_copy: {use_copy}"
)
async def test_loadFromNeo4j(
af: AgeFreighter,
chunk_size: int = 96,
direct_loading: bool = False,
use_copy: bool = False,
init_neo4j: bool = False,
) -> None:
"""
Test for loadFromNeo4j()
create networkx graph from actorfilms.csv
after creating networkx graph, load it to a graph
"""
try:
n4j_uri = os.environ["NEO4J_URI"]
n4j_user = os.environ["NEO4J_USER"]
n4j_password = os.environ["NEO4J_PASSWORD"]
except KeyError:
print(
"Please set the environment variables NEO4J_URI, NEO4J_USER, NEO4J_PASSWORD"
)
return
# prepare test data for neo4j
if init_neo4j:
await loadTestDataToNeo4j(n4j_uri, n4j_user, n4j_password)
start_time = time.time()
graph_name = "Actor_Films"
await af.loadFromNeo4j(
uri=n4j_uri,
user=n4j_user,
password=n4j_password,
neo4j_database="neo4j",
graph_name=graph_name,
id_map={"Actor": "ActorID", "Film": "FilmID"},
chunk_size=chunk_size,
direct_loading=direct_loading,
drop_graph=True,
use_copy=use_copy,
)
print(
f"test_loadFromNeo4j : time, {time.time() - start_time:.2f}, chunk_size: {chunk_size}, direct_loading: {direct_loading}, use_copy: {use_copy}"
)
async def loadTestDataToNeo4j(
n4j_uri: str = "",
n4j_user: str = "",
n4j_password: str = "",
) -> None:
"""
Load test data to Neo4j
file downloaded from https://www.kaggle.com/datasets/darinhawley/imdb-films-by-actor-for-10k-actors
"""
from neo4j import AsyncGraphDatabase
batch_size = 1000
df = pd.read_csv("../data/actorfilms.csv")
uniq_actors = df[["ActorID", "Actor"]].drop_duplicates()
uniq_films = df[["FilmID", "Film", "Year", "Votes", "Rating"]].drop_duplicates()
async with AsyncGraphDatabase.driver(
n4j_uri, auth=(n4j_user, n4j_password)
) as driver:
async with driver.session() as session:
# clear the database
await session.run("MATCH (a)-[r]->() DELETE a, r")
await session.run("MATCH (a) DELETE a")
await session.run("DROP INDEX actor_index_id IF EXISTS")
await session.run("DROP INDEX film_index_id IF EXISTS")
await session.run(
"CREATE INDEX actor_index_id FOR (n:Actor) ON (n.ActorID)"
)
await session.run("CREATE INDEX film_index_id FOR (n:Film) ON (n.FilmID)")
# create actor nodes
for idx in range(0, len(uniq_actors), batch_size):
actors = [
{"Actor": actor, "ActorID": actorid}
for i, (actor, actorid) in enumerate(
zip(
uniq_actors["Actor"][idx : idx + batch_size].tolist(),
uniq_actors["ActorID"][idx : idx + batch_size].tolist(),
)
)
]
await session.run(
"""UNWIND $actors AS row
CREATE (a:Actor)
SET a += row""",
actors=actors,
)
# create film nodes
for idx in range(0, len(uniq_films), batch_size):
films = [
{
"Film": film,
"FilmID": filmid,
"Year": year,
"Votes": votes,
"Rating": rating,
}
for i, (film, filmid, year, votes, rating) in enumerate(
zip(
uniq_films["Film"][idx : idx + batch_size].tolist(),
uniq_films["FilmID"][idx : idx + batch_size].tolist(),
uniq_films["Year"][idx : idx + batch_size].tolist(),
uniq_films["Votes"][idx : idx + batch_size].tolist(),
uniq_films["Rating"][idx : idx + batch_size].tolist(),
)
)
]
await session.run(
"""UNWIND $films AS row
CREATE (f:Film)
SET f += row""",
films=films,
)
# create edges
for idx in range(0, len(df), batch_size):
acted_ins = [
{"from": actorid, "to": filmid}
for i, (actorid, filmid) in enumerate(
zip(
df["ActorID"][idx : idx + batch_size].tolist(),
df["FilmID"][idx : idx + batch_size].tolist(),
)
)
]
await session.run(
"""UNWIND $acted_ins AS row
MATCH (from:Actor {ActorID: row.from})
MATCH (to:Film {FilmID: row.to})
CREATE (from)-[r:ACTED_IN]->(to)
SET r += row""",
acted_ins=acted_ins,
)
async def test_loadFromPGSQL(
af: AgeFreighter,
chunk_size: int = 96,
direct_loading: bool = False,
use_copy: bool = False,
init_pgsql: bool = False,
) -> None:
"""
Test for loadFromPGSQL()
create tables from actorfilms.csv
after creating table, load it to a graph
"""
try:
src_connection_string = os.environ["SRC_PG_CONNECTION_STRING"]
except KeyError:
print("Please set the environment variables SRC_PG_CONNECTION_STRING")
return
src_tables = {"from_nodes": "Actor", "to_nodes": "Film", "edges": "ACTED_IN"}
if init_pgsql:
# prepare test data for pgsql
await loadTestDataToPGSQL(
con_string=src_connection_string,
src_tables=src_tables,
src_csv="../data/actorfilms.csv",
)
start_time = time.time()
graph_name = "actorfilms"
await af.loadFromPGSQL(
src_con_string=src_connection_string,
src_tables=src_tables,
graph_name=graph_name,
# values are culumn name with small caps
id_map={
"Actor": "actorid",
"Film": "filmid",
},
chunk_size=chunk_size,
direct_loading=direct_loading,
drop_graph=True,
use_copy=use_copy,
)
print(
f"test_loadFromPGSQL : time, {time.time() - start_time:.2f}, chunk_size: {chunk_size}, direct_loading: {direct_loading}, use_copy: {use_copy}"
)
async def loadTestDataToPGSQL(
con_string: str = "",
src_tables: dict = {},
src_csv: str = "",
) -> None:
"""
Load test data to PGSQL
file downloaded from https://www.kaggle.com/datasets/darinhawley/imdb-films-by-actor-for-10k-actors
"""
import psycopg as pg
df = pd.read_csv(src_csv)
datum = [None, None, None]
types = [None, None, None]
datum[0] = df[["ActorID", "Actor"]].drop_duplicates()
datum[0].insert(0, "serial", range(1, len(datum[0]) + 1))
types[0] = ["SERIAL", "TEXT", "TEXT"]
datum[1] = df[["FilmID", "Film", "Year", "Votes", "Rating"]].drop_duplicates()
datum[1].insert(0, "serial", range(1, len(datum[1]) + 1))
types[1] = ["SERIAL", "TEXT", "TEXT", "INT", "INT", "REAL"]
datum[2] = df[["ActorID", "FilmID"]].rename(
columns={"ActorID": "start_id", "FilmID": "end_id"}
)
datum[2].insert(0, "serial", range(1, len(datum[2]) + 1))
types[2] = ["SERIAL", "TEXT", "TEXT"]
with pg.connect(con_string) as conn:
with conn.cursor() as cur:
for idx, (table, data, type) in enumerate(
zip(src_tables.values(), datum, types)
):
cur.execute(f"DROP TABLE IF EXISTS {table}")
cols = ",".join(
[
col + " " + tp
for _, (col, tp) in enumerate(zip(data.columns, type))
]
)
cur.execute(f"CREATE TABLE {table} ({cols})")
query = f"COPY {table} FROM STDIN (FORMAT TEXT, FREEZE)"
with cur.copy(query) as copy:
copy.write(
"\n".join(
[
"\t".join(map(str, row))
for row in data.itertuples(index=False)
]
)
)
cur.execute("COMMIT")
async def test_loadFromParquet(
af: AgeFreighter,
chunk_size: int = 96,
direct_loading: bool = False,
use_copy: bool = False,
init_parquet: bool = False,
) -> None:
"""
Test for loadFromParquet()
create parquet from actorfilms.csv
after creating parquet, load it to a graph
"""
src_parquet = "../data/actorfilms.parquet"
if init_parquet:
pd.read_csv("../data/actorfilms.csv").to_parquet(src_parquet)
start_time = time.time()
graph_name = "actorfilms"
await af.loadFromParquet(
src_parquet=src_parquet,
graph_name=graph_name,
start_v_label="Actor",
start_id="ActorID",
start_props=["Actor"],
edge_type="ACTED_IN",
end_v_label="Film",
end_id="FilmID",
end_props=["Film", "Year", "Votes", "Rating"],
chunk_size=chunk_size,
direct_loading=direct_loading,
drop_graph=True,
use_copy=use_copy,
)
print(
f"test_loadFromParquet : time, {time.time() - start_time:.2f}, chunk_size: {chunk_size}, direct_loading: {direct_loading}, use_copy: {use_copy}"
)
async def test_loadFromAvro(
af: AgeFreighter,
chunk_size: int = 96,
direct_loading: bool = False,
use_copy: bool = False,
init_avro: bool = False,
) -> None:
"""
NOT IMPLEMENTED YET
Test for loadFromAvro()
create avro from actorfilms.csv
after creating avro, load it to a graph
"""
src_avro = "../data/actorfilms.avro"
if init_avro:
await convertCSVtoAvro(src_csv="../data/actorfilms.csv", tgt_avro=src_avro)
start_time = time.time()
graph_name = "actorfilms"
await af.loadFromAvro(
src_avro=src_avro,
graph_name=graph_name,
start_v_label="Actor",
start_id="ActorID",
start_props=["Actor"],
edge_type="ACTED_IN",
end_v_label="Film",
end_id="FilmID",
end_props=["Film", "Year", "Votes", "Rating"],
chunk_size=chunk_size,
direct_loading=direct_loading,
drop_graph=True,
use_copy=use_copy,
)
print(
f"test_loadFromAvro : time, {time.time() - start_time:.2f}, chunk_size: {chunk_size}, direct_loading: {direct_loading}, use_copy: {use_copy}"
)
async def convertCSVtoAvro(src_csv: str = "", tgt_avro: str = "") -> None:
"""
Convert CSV to Avro
"""
import fastavro as fa
records = pd.read_csv(src_csv).to_dict(orient="records")
schema = {
"type": "record",
"name": "actorfilms",
"fields": [
{"name": "ActorID", "type": "string"},
{"name": "Actor", "type": "string"},
{"name": "FilmID", "type": "string"},
{"name": "Film", "type": "string"},
{"name": "Year", "type": "int"},
{"name": "Votes", "type": "int"},
{"name": "Rating", "type": "float"},
],
}
parsed_schema = fa.parse_schema(schema)
with open(tgt_avro, "wb") as f:
fa.writer(f, parsed_schema, records)
async def test_loadFromCosmosGremlin(
af: AgeFreighter,
chunk_size: int = 96,
direct_loading: bool = False,
use_copy: bool = False,
init_gremlin: bool = True,
) -> None:
"""
NEED MORE TUNING
Test for loadFromCosmosGremlin()
create graph via Gremlin from actorfilms.csv
after creating graph, load it to a graph
export COSMOS_GREMLIN_ENDPOINT='wss://account_name.gremlin.cosmos.azure.com:443/'
export COSMOS_GREMLIN_KEY='OwA3fVHzGzs8LsTN...........'
"""
try:
cosmos_gremlin_endpoint = os.environ["COSMOS_GREMLIN_ENDPOINT"]
cosmos_gremlin_key = os.environ["COSMOS_GREMLIN_KEY"]
except KeyError:
print(
"Please set the environment variables COSMOS_GREMLIN_ENDPOINT / COSMOS_GREMLIN_KEY"
)
return
cosmos_db_name = "db1"
cosmos_graph_name = "actorfilms"
cosmos_username = f"/dbs/{cosmos_db_name}/colls/{cosmos_graph_name}"
cosmos_pkey = "pk"
if init_gremlin:
await loadTestDataViaGremlin(
cosmos_gremlin_endpoint=cosmos_gremlin_endpoint,
cosmos_gremlin_key=cosmos_gremlin_key,
cosmos_username=cosmos_username,
cosmos_pkey=cosmos_pkey,
src_csv="../data/actorfilms.csv",
)
start_time = time.time()
graph_name = "actorfilms"
await af.loadFromCosmosGremlin(
cosmos_gremlin_endpoint=cosmos_gremlin_endpoint,
cosmos_gremlin_key=cosmos_gremlin_key,
cosmos_username=cosmos_username,
cosmos_pkey=cosmos_pkey,
graph_name=graph_name,
id_map={"Actor": "ActorID", "Film": "FilmID"},
chunk_size=chunk_size,
direct_loading=direct_loading,
drop_graph=True,
use_copy=use_copy,
)
print(
f"test_loadFromCosmosGremlin : time, {time.time() - start_time:.2f}, chunk_size: {chunk_size}, direct_loading: {direct_loading}, use_copy: {use_copy}"
)
async def loadTestDataViaGremlin(
cosmos_gremlin_endpoint: str = "",
cosmos_gremlin_key: str = "",
cosmos_username: str = "",
cosmos_pkey: str = "",
src_csv: str = "",
) -> None:
"""
Load test data to Cosmos Gremlin
file downloaded from https://www.kaggle.com/datasets/darinhawley/imdb-films-by-actor-for-10k-actors
"""
from gremlin_python.driver import client, serializer
try:
g_client = client.Client(
url=cosmos_gremlin_endpoint,
traversal_source="g",
username=cosmos_username,
password=cosmos_gremlin_key,
message_serializer=serializer.GraphSONSerializersV2d0(),
)
except Exception as e:
print(f"Failed to connect to Gremlin server: {e}")
return
# g_client.submitAsync("g.V().drop()")
df = pd.read_csv(src_csv)
actors = df[["Actor", "ActorID"]].drop_duplicates()
actors = actors.map(lambda x: x.replace("'", r"\'") if isinstance(x, str) else x)
films = df[["Film", "FilmID", "Year", "Votes", "Rating"]].drop_duplicates()
films = films.map(lambda x: x.replace("'", r"\'") if isinstance(x, str) else x)
for idx, (actor, actorid) in actors.iterrows():
query = "g.addV('Actor').property('Actor', '{actor}').property('ActorID', '{actorid}').property('{pk}', '{actorid}')".format(
actorid=actorid, actor=actor, pk=cosmos_pkey
)
# fixed partition key for small data
# query = "g.addV('Actor').property('Actor', '{actor}').property('ActorID', '{actorid}').property('{pk}', 'pk')".format(
# actorid=actorid, actor=actor, pk=cosmos_pkey
# )
g_client.submitAsync(query)
for idx, (film, filmid, year, votes, rating) in films.iterrows():
query = "g.addV('Film').property('Film', '{film}').property('FilmID', '{filmid}').property('Year', {year}).property('Votes', {votes}).property('Rating', {rating}).property('{pk}', '{filmid}')".format(
filmid=filmid,
film=film,
year=year,
votes=votes,
rating=rating,
pk=cosmos_pkey,
)
# fixed partition key for small data
# query = "g.addV('Film').property('Film', '{film}').property('FilmID', '{filmid}').property('Year', {year}).property('Votes', {votes}).property('Rating', {rating}).property('{pk}', 'pk')".format(
# filmid=filmid,
# film=film,
# year=year,
# votes=votes,
# rating=rating,
# pk=cosmos_pkey,
# )
g_client.submitAsync(query)
# can not avoid cross-partition query when the total size of documents exceeds the maximum size of logical partition, 20GB, because actor and film are in different partition
for row in df.itertuples(index=False):
query = "g.V().has('{pk}', '{actorid}').addE('ACTED_IN').to(g.V().has('{pk}', '{filmid}'))".format(
actorid=row.ActorID, filmid=row.FilmID, pk=cosmos_pkey
)
g_client.submitAsync(query)
g_client.close()
async def main() -> None:
"""
Test for AgeFreighter
export PG_CONNECTION_STRING="host=your_server.postgres.database.azure.com port=5432 dbname=postgres user=account password=your_password"
Strongly reccomend to adjust chunk_size with your data and server before loading large amount of data
Especially, the number of properties in the vertex affects the complecity of the query
Due to asynchronous nature of the library, the duration for loading data is not linear to the number of rows
Addition to the chunk_size, max_wal_size and checkpoint_timeout in the postgresql.conf should be considered
"""
try:
connection_string = os.environ["PG_CONNECTION_STRING"]
except KeyError:
print("Please set the environment variable PG_CONNECTION_STRING")
return
try:
af = await AgeFreighter.connect(dsn=connection_string, max_connections=64)
test_set = [
[False, False],
[True, False],
[False, True],
]
chunk_size = 128
do = True
if do:
[
await test_loadFromSingleCSV(
af,
chunk_size=chunk_size,
direct_loading=direct_loading,
use_copy=use_copy,
)
for idx, (direct_loading, use_copy) in enumerate(test_set)
]
print("test_loadFromSingleCSV done\n")
do = True
if do:
[
await test_loadFromCSVs(
af,
chunk_size=chunk_size,
direct_loading=direct_loading,
use_copy=use_copy,
)
for idx, (direct_loading, use_copy) in enumerate(test_set)
]
print("test_loadFromCSVs done\n")
do = True
if do:
[
await test_loadFromNetworkx(
af,
chunk_size=chunk_size,
direct_loading=direct_loading,
use_copy=use_copy,
)
for idx, (direct_loading, use_copy) in enumerate(test_set)
]
print("test_loadFromNetworkx done\n")
do = True
if do:
[
await test_loadFromNeo4j(
af,
chunk_size=chunk_size,
direct_loading=direct_loading,
use_copy=use_copy,
init_neo4j=True,
)
for idx, (direct_loading, use_copy) in enumerate(test_set)
]
print(
"test_loadFromNeo4j done\n"
"##### The duration for test_loadFromNeo4j depends on the performance of the neo4j server. #####\n"
)
do = True
if do:
[
await test_loadFromPGSQL(
af,
chunk_size=chunk_size,
direct_loading=direct_loading,
use_copy=use_copy,
init_pgsql=True,
)
for idx, (direct_loading, use_copy) in enumerate(test_set)
]
print(
"test_loadFromPGSQL done\n"
"##### The duration for test_loadFromPGSQL depends on the performance of the source pgsql server. #####\n"
)
do = True
if do:
[
await test_loadFromParquet(
af,
chunk_size=chunk_size,
direct_loading=direct_loading,
use_copy=use_copy,
init_parquet=True,
)
for idx, (direct_loading, use_copy) in enumerate(test_set)
]
print("test_loadFromParquet done\n")
# NEED MORE TUNING
do = True
if do:
[
await test_loadFromCosmosGremlin(
af,
chunk_size=chunk_size,
direct_loading=direct_loading,
use_copy=use_copy,
init_gremlin=False,
)
for idx, (direct_loading, use_copy) in enumerate(test_set)
]
print(
"test_loadFromCosmosGremlin done\n"
"##### The duration for test_loadFromCosmosGremlin depends on the performance of the source Cosmos DB. #####\n"
)
# NOT IMPLEMENTED YET
do = False
if do:
[
await test_loadFromAvro(
af,
chunk_size=chunk_size,
direct_loading=direct_loading,
use_copy=use_copy,
init_avro=True,
)
for idx, (direct_loading, use_copy) in enumerate(test_set)
]
print("test_loadFromAvro done\n")
finally:
await af.pool.close()
if __name__ == "__main__":
asyncio.run(main())
Test & Samples
export PG_CONNECTION_STRING="host=your_server.postgres.database.azure.com port=5432 dbname=postgres user=account password=your_password"
python3 tests/test_agefreighter.py
For more information about Apache AGE
- Apache AGE : https://age.apache.org/
- GitHub : https://github.com/apache/age
- Document : https://age.apache.org/age-manual/master/index.html
License
MIT License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file agefreighter-0.4.1.tar.gz
.
File metadata
- Download URL: agefreighter-0.4.1.tar.gz
- Upload date:
- Size: 25.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: uv/0.5.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 264ba7789d8320ed0c946cd0c89a4407427d9afa2bbe9b3b424b641150c130c3 |
|
MD5 | 70616a3658d831018d72d2acd14f0a62 |
|
BLAKE2b-256 | fae864140f2d6f8d1210c574a89142ffd90af19b8516daf63aa52e20d2e01a2d |
File details
Details for the file agefreighter-0.4.1-py3-none-any.whl
.
File metadata
- Download URL: agefreighter-0.4.1-py3-none-any.whl
- Upload date:
- Size: 17.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: uv/0.5.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d83bace774d00a46d4a7808398fac6d83c4a17d71d563856b2a3e58151cb8d84 |
|
MD5 | ff5064a3dff455e8b3550c0deb488d9f |
|
BLAKE2b-256 | 53b85c6320279d4e6c33132a0f5989d73e8261fbae9520b375d9c6b7efb5ea75 |