AgentSearch: An open source framework and dataset for webscale local search.
Reason this release was yanked:
bad
Project description
AgentSearch [ΨΦ]: A powerful search agent client and search engine.
This framework facilitates seamless integration with the AgentSearch dataset or hosted search APIs (e.g. Search Engines
) and with RAG-specialized LLM's (e.g. Search Agents
).
Features of AgentSearch
- Search Agent: Seamless integration with any RAG-specialized LLM, such as Sensei-7B.
- Customizable Search: Deploy your own local search engine with the AgentSearch dataset. Or, introduce your own custom datasets to meet your specific needs.
- API Endpoint: Connect with SciPhi and other search provider APIs for easy deployment.
Quickstart Guide for AgentSearch
Install the AgentSearch Client
pip install agent-search
# Get a free API key at https://www.sciphi.ai/signup
export SCIPHI_API_KEY=$MY_SCIPHI_API_KEY
# Requires SCIPHI_API_KEY in env
from agent_search import SciPhi
client = SciPhi()
# Perform a search
search_response = client.search(query='Quantum Field Theory', search_provider='agent-search')
print(search_response)
# [{ 'score': '.89', 'url': 'https://...', 'metadata': {...} }
# Generate a RAG response
rag_response = client.get_search_rag_response(query='latest news', search_provider='bing', llm_model='SciPhi/Sensei-7B-V1')
print(rag_response)
# { 'response': '...', 'other_queries': '...', 'search_results': '...' }
Community & Support
Local AgentSearch Setup and Initialization
For self-hosting, follow the steps below.
Prerequisites
Ensure Docker and Postgres are installed on your system.
Steps:
-
Launch Postgres Database:
- Start the Postgres service on your system:
# Command to start Postgres, adjust based on your system's configuration sudo service postgresql start
- This step ensures that the Postgres database is running and ready to be populated.
- Start the Postgres service on your system:
-
Relational Database Population:
- Command to populate the Postgres database:
python -m agent_search.scripts.populate_postgres_from_hf run
- This script populates a postgres database with the parameters from
config.ini
, adaptable to custom datasets. For help directly istalling the full 4TB postgres database, contact our team.
- Command to populate the Postgres database:
-
Start Qdrant Service with Docker:
- Run the Qdrant service in Docker:
docker run -p 6333:6333 -p 6334:6334 \ -v $(pwd)/qdrant_storage:/qdrant/storage:z \ qdrant/qdrant
- For Qdrant installation guidance, see Qdrant Documentation.
- Run the Qdrant service in Docker:
-
Vector Database Population:
- Populate the Vector database:
python -m agent_search.scripts.populate_qdrant_from_postgres run --delete_existing=True
- This step prepares a qdrant database with the parameters from
config.ini
. For direct installation assistance, contact our team.
- Populate the Vector database:
-
Run the Server:
- Launch the AgentSearch server:
python -m agent_search.app.server
- Launch the AgentSearch server:
Additional Notes
- Execute all commands from the root directory of the AgentSearch project.
- Replace
query
in the run command with your search query. - Check back soon for our User Guide.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
agent_search-0.0.8.tar.gz
(55.1 kB
view hashes)
Built Distribution
Close
Hashes for agent_search-0.0.8-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6bb7b9e9829dad6e48e33354de51345a7e6f5be985c7365ebe1a2d0d97a6d2c6 |
|
MD5 | c8bddd32cff2b7eec3b05e1646222607 |
|
BLAKE2b-256 | d55ec8ca45823ef026f698454111c4c9ea4e04de56053355232439480a0b2c3b |