Skip to main content

Action chaining and history for agents

Project description

Action chaining and history for agents

Lint and Test PyPI version

Why Use This?

This package helps manage and simplify the task of handling actions for an agent, especially a looping agent with chained functions. Actions can be anything, but the intended purpose is to work with openai function calling or other JSON/function calling LLM completion paradigms.

This package facilitates action creation, retrieval, and management, all while supporting vector search powered by chromadb to efficiently locate relevant actions.

Installation

pip install agentaction

Quickstart

Create a directory for your action modules:

mkdir actions

In this directory, you can create Python files (.py) that define your actions. Each file should define a get_actions function that returns a list of action dictionaries. Here is a sample action file sample_action.py:

def sample_function(args):
    # Your function logic here
    return "Hello, " + args["name"]

def get_actions():
    return [
        {
            "prompt": "Say hello",
            "builder": None,
            "handler": sample_function,
            "suggestion_after_actions": [],
            "never_after_actions": [],
            "function": {
                "name": "sample_function",
                "description": "Says hello to a person",
                "args": ["name"]
            }
        }
    ]

Now you can use the action manager in your agent. Here's a simple example:

from actions_manager import import_actions, use_action

# Import the actions
import_actions("./actions")

# Use an action
result = use_action("sample_function", {"name": "John"})
actions = search_actions("hello")
print(result)  # Should print: {"success": True, "output": "Hello, John"}

You can use the get_available_actions and get_action functions to search for and retrieve actions, respectively. And, don't forget to use the add_to_action_history function to keep track of which actions your agent has performed.

Usage Guide

Action Creation and Addition

from actions_manager import add_action

action = {
    "prompt": "Action Prompt",
    "builder": None, # the function that is called to build the action prompt
    "handler": your_function_name, # the function that is called when the action is executed
    "suggestion_after_actions": ["other_action_name1", "other_action_name2"],
    "never_after_actions": ["action_name3", "action_name4"],
    "function": {
        "name": "your_function_name",
        "description": "Your function description",
        "args": ["arg1", "arg2"]
    }
}

add_action("your_function_name", action)

Action Execution

from actions_manager import use_action

result = use_action("your_function_name", {"arg1": "value1", "arg2": "value2"})

Search for Relevant Actions

from actions_manager import get_available_actions

actions = get_available_actions("query_text")

API Documentation

compose_action_prompt(action: dict, values: dict) -> str

Generates a prompt for a given action based on provided values.

get_actions() -> dict

Retrieves all the actions present in the global actions dictionary.

add_to_action_history(action_name: str, action_arguments: dict={}, success: bool=True)

Adds an executed action to the action history.

get_action_history(n_results: int=20) -> list

Retrieves the most recent executed actions.

get_last_action() -> str or None

Retrieves the last executed action from the action history.

get_available_actions(search_text: str) -> list

Retrieves the available actions based on relevance and last action.

get_formatted_actions(search_text: str) -> list

Retrieve a dict containing the available actions in several formats

get_action_from_memory(action_name) -> dict or None

Retrieve an action from memory based on the action's name.

search_actions(search_text: str, n_results: int=5) -> list

Searches for actions based on a query text.

use_action(function_name: str, arguments: dict) -> dict

Executes a specific action by its function name.

add_action(name: str, action: dict)

Adds an action to the actions dictionary and 'actions' collection in memory.

get_action(name: str) -> dict or None

Retrieves a specific action by its name from the 'actions' dictionary.

remove_action(name: str) -> bool

Removes a specific action by name.

import_actions(actions_dir: str)

Imports all the actions present in the 'actions_dir' directory. The actions returned are then added to the 'actions' dictionary.

clear_actions()

Wipes the 'actions' collection in memory and resets the 'actions' dictionary.

Contributions Welcome

If you like this library and want to contribute in any way, please feel free to submit a PR and I will review it. Please note that the goal here is simplicity and accesibility, using common language and few dependencies.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agentaction-0.1.7.tar.gz (6.6 kB view details)

Uploaded Source

Built Distribution

agentaction-0.1.7-py3-none-any.whl (7.0 kB view details)

Uploaded Python 3

File details

Details for the file agentaction-0.1.7.tar.gz.

File metadata

  • Download URL: agentaction-0.1.7.tar.gz
  • Upload date:
  • Size: 6.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for agentaction-0.1.7.tar.gz
Algorithm Hash digest
SHA256 72bf750a615b6d7cc6a828a7cd200da5e504606f7b4ce6f7a357d3f862a31d14
MD5 8834ce5afec2aac54f82844872937b72
BLAKE2b-256 17fba3dc77bed76c33d1bb8bf5430803629fd2d35d68374f915e07d643b9dc83

See more details on using hashes here.

File details

Details for the file agentaction-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: agentaction-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 7.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for agentaction-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 2a96b8e843a86db30f91c1ba0e9e88d74bb100d716dde0d962b052c29637152b
MD5 92c76ac426ef48dc3caec0fce48612bf
BLAKE2b-256 f953c7ee5ccecb42aaf1bc615b8bcf2a5dab2aa06c337b1cc2f5092a245390ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page