Skip to main content

A Dynamic Environment to Evaluate Attacks and Defenses for LLM Agents

Project description

AgentDojo: Benchmarking the Capabilities and Adversarial Robustness of LLM Agents

Edoardo Debenedetti1, Jie Zhang1, Mislav Balunović1,2, Luca Beurer-Kellner1,2, Marc Fischer1,2, Florian Tramèr1

1ETH Zurich and 2Invariant Labs

Read our paper here.

Quickstart

pip install agentdojo

[!IMPORTANT] Note that the API of the package is still under development and might change in the future.

If you want to use the prompt injection detector, you need to install the transformers extra:

pip install "agentdojo[transformers]"

Running the benchmark

The benchmark can be run with the benchmark script. Documentation on how to use the script can be obtained with the --help flag.

For example, to run the workspace suite on the tasks 0 and 1, with gpt-4o-2024-05-13 as the LLM, the tool filter as a defense, and the attack with tool knowlege, run the following command:

python -m agentdojo.scripts.benchmark -s workspace -ut user_task_0 \
    -ut user_task_1 --model gpt-4o-2024-05-13 \
    --defense tool_filter --attack tool_knowledge

To run the above, but on all suites and tasks, run the following:

python -m agentdojo.scripts.benchmark --model gpt-4o-2024-05-13 \
    --defense tool_filter --attack tool_knowledge

Documentation of the Dojo

Take a look at our documentation.

Development set-up

Take a look at the development set-up docs.

Citing

If you use AgentDojo in your research, please consider citing our paper:

@misc{debenedetti2024agentdojo,
      title={AgentDojo: A Dynamic Environment to Evaluate Attacks and Defenses for LLM Agents},
      author={Edoardo Debenedetti and Jie Zhang and Mislav Balunović and Luca Beurer-Kellner and Marc Fischer and Florian Tramèr},
      year={2024},
      eprint={2406.13352},
      archivePrefix={arXiv},
      primaryClass={cs.CR}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agentdojo-0.1.16.tar.gz (19.0 MB view details)

Uploaded Source

Built Distribution

agentdojo-0.1.16-py3-none-any.whl (153.9 kB view details)

Uploaded Python 3

File details

Details for the file agentdojo-0.1.16.tar.gz.

File metadata

  • Download URL: agentdojo-0.1.16.tar.gz
  • Upload date:
  • Size: 19.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for agentdojo-0.1.16.tar.gz
Algorithm Hash digest
SHA256 3cec2142914a290cb4aee6cd95e4d5ed25d2d7aeb2b13cd5abdf316a0e8b272f
MD5 ef87ed84c39171d4993439845b422ec5
BLAKE2b-256 6938229ffb943f22fcbd53138f87c7391dbe09e7f831251e80877fab328a1405

See more details on using hashes here.

File details

Details for the file agentdojo-0.1.16-py3-none-any.whl.

File metadata

  • Download URL: agentdojo-0.1.16-py3-none-any.whl
  • Upload date:
  • Size: 153.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for agentdojo-0.1.16-py3-none-any.whl
Algorithm Hash digest
SHA256 49f4e9957116ee44f20992791027f71b72a36cccb8c2bac7478971ce8b4823f5
MD5 909bf8b43bc0d70274edd2baf2ed8862
BLAKE2b-256 44def3b650ec9448c62122384a4d9d0e6076468a37cf98a40243cdbf4484318b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page