Skip to main content

A Dynamic Environment to Evaluate Attacks and Defenses for LLM Agents

Project description

AgentDojo: Benchmarking the Capabilities and Adversarial Robustness of LLM Agents

Edoardo Debenedetti1, Jie Zhang1, Mislav Balunović1,2, Luca Beurer-Kellner1,2, Marc Fischer1,2, Florian Tramèr1

1ETH Zurich and 2Invariant Labs

Read our paper here.

Quickstart

pip install agentdojo

[!IMPORTANT] Note that the API of the package is still under development and might change in the future.

If you want to use the prompt injection detector, you need to install the transformers extra:

pip install "agentdojo[transformers]"

Running the benchmark

The benchmark can be run with the benchmark script. Documentation on how to use the script can be obtained with the --help flag.

For example, to run the workspace suite on the tasks 0 and 1, with gpt-4o-2024-05-13 as the LLM, the tool filter as a defense, and the attack with tool knowlege, run the following command:

python -m agentdojo.scripts.benchmark -s workspace -ut user_task_0 \
    -ut user_task_1 --model gpt-4o-2024-05-13 \
    --defense tool_filter --attack tool_knowledge

To run the above, but on all suites and tasks, run the following:

python -m agentdojo.scripts.benchmark --model gpt-4o-2024-05-13 \
    --defense tool_filter --attack tool_knowledge

Documentation of the Dojo

Take a look at our documentation.

Development set-up

Take a look at the development set-up docs.

Citing

If you use AgentDojo in your research, please consider citing our paper:

@misc{debenedetti2024agentdojo,
      title={AgentDojo: A Dynamic Environment to Evaluate Attacks and Defenses for LLM Agents},
      author={Edoardo Debenedetti and Jie Zhang and Mislav Balunović and Luca Beurer-Kellner and Marc Fischer and Florian Tramèr},
      year={2024},
      eprint={2406.13352},
      archivePrefix={arXiv},
      primaryClass={cs.CR}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agentdojo-0.1.18.tar.gz (19.0 MB view details)

Uploaded Source

Built Distribution

agentdojo-0.1.18-py3-none-any.whl (154.2 kB view details)

Uploaded Python 3

File details

Details for the file agentdojo-0.1.18.tar.gz.

File metadata

  • Download URL: agentdojo-0.1.18.tar.gz
  • Upload date:
  • Size: 19.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for agentdojo-0.1.18.tar.gz
Algorithm Hash digest
SHA256 75c5562979332ae26fdd8124d97aae5076c040ff11ec828af3e365ab6d538e32
MD5 49f0258737f7abd9da12661541495d98
BLAKE2b-256 de402c4d711de95b3136f543d057eb6f2a1c08bfe413ecdaa6ddb14f1112bd9f

See more details on using hashes here.

File details

Details for the file agentdojo-0.1.18-py3-none-any.whl.

File metadata

  • Download URL: agentdojo-0.1.18-py3-none-any.whl
  • Upload date:
  • Size: 154.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for agentdojo-0.1.18-py3-none-any.whl
Algorithm Hash digest
SHA256 44e15c7ef8579cb3be4e0db6579ef8ae188fe3290db5dec735a35f0cc3cf83db
MD5 718e36e0ea454c616e127185e2b4765d
BLAKE2b-256 0a91ea9272057701477b9616dadc56895f93a79e9e7bd38288e74a058c2bf478

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page