Skip to main content

A client library for interacting with the Agents API

Project description

Agents Client Library

Overview

The Agents Client Library provides a simple interface for interacting with the Agents API. It handles authentication, request management, and provides convenient methods for managing chatbots and agents.

Installation

From PyPI

pip install agents-client

From Source

git clone https://github.com/Levangie-Laboratories/agents-client.git
cd agents-client
pip install -r requirements.txt

Configuration

The client library uses a config.json file for API settings. You can either use the default configuration or provide your own:

from agents.client import AgentClient

# Using default configuration
client = AgentClient()

# Using custom configuration file
client = AgentClient(config_path='path/to/config.json')

# Override configuration programmatically
client = AgentClient(base_url='https://api.example.com', api_version='v2')

Configuration Options

  • base_url: API base URL
  • version: API version
  • timeout: Request timeout in seconds
  • retry_attempts: Number of retry attempts
  • retry_delay: Delay between retries in seconds

See config.json for all available options.

Quick Start

Basic Usage

from client import ChatbotClient
from client.base_client import ApiError, AuthenticationError

# Initialize client
base_url = "http://localhost:8000"
chatbot = ChatbotClient(base_url)

# Set API key
api_key = "your-api-key"
chatbot.set_api_key(api_key)

try:
    # Create a chatbot instance
    config = {
        "temperature": 0.7,
        "max_tokens": 4000,
        "behavior": "A helpful assistant that provides clear and concise answers."
    }

    # Create the chatbot
    response = chatbot.create_chatbot(
        name="BasicChat",
        model="gpt-4o-mini",
        config=config
    )

    # Store chatbot ID
    chatbot_id = response.get('id')
    print(f"Created chatbot with ID: {chatbot_id}\n")

    # Example conversation
    message = "Hello! How are you?"
    chat_response = chatbot.chat(chatbot_id, message)
    print(f"Chatbot: {chat_response.get('response', 'No response')}\n")

except AuthenticationError as e:
    print(f"Authentication error: {str(e)}")
except ApiError as e:
    print(f"API error: {str(e)}")

Async Streaming Example

from agents.client import AgentClient
import asyncio

async def main():
    # Initialize client with async context manager
    async with AgentClient("http://localhost:8000") as client:
        client.set_api_key("your-api-key")

        # Create an agent with API execution mode
        config = {
            "behavior": "task-focused",
            "model": "gpt-4o-mini",
            "api_mode": True  # Enable API execution mode
        }
        agent = await client.create_agent_with_tools(
            name="FileManager",
            model="gpt-4o-mini",
            tools=FileTools(),  # Your tool class instance
            config=config
        )

        # Stream interactions with the agent
        async for event in client.process_agent_request(agent["id"], "Update debug mode in config.json"):
            if event["type"] == "function_call":
                print(f"Executing function: {event['data']['function']}")
                # Function is automatically executed by the client
            elif event["type"] == "execution_status":
                print(f"Execution result: {event['data']}")
            elif event["type"] == "completion":
                print(f"Task completed: {event['data']}")
            elif event["type"] == "error":
                print(f"Error: {event['data']}")

# Run the async client
asyncio.run(main())

State Management Example

async with AgentClient("http://localhost:8000") as client:
    # State is automatically synchronized
    async for event in client.process_agent_request(agent_id, message):
        if event["type"] == "state_update":
            print(f"Agent state updated: {event['data']}")
        elif event["type"] == "function_call":
            # State is preserved across function calls
            result = await client.execute_function(event["data"])
            # State is automatically updated with function results
            await client.submit_result(agent_id, event["data"]["sequence_id"], result)

## Authentication
The client supports two authentication methods:
1. Quick API key generation
2. Manual API key setting

```python
# Method 1: Quick API key
api_key_data = client.get_quick_api_key()

# Method 2: Manual setting
client.set_api_key("your-api-key")

Chatbot Operations

Creating a Chatbot

from client import ChatbotClient
from client.base_client import ApiError, AuthenticationError

# Initialize client
base_url = "http://localhost:8000"
chatbot_client = ChatbotClient(base_url)

# Set API key
api_key = "your-api-key"
chatbot_client.set_api_key(api_key)

try:
    # Define configuration
    config = {
        "temperature": 0.7,
        "max_tokens": 4000,
        "behavior": "A helpful assistant that provides clear and concise answers."
    }

    # Create the chatbot
    response = chatbot_client.create_chatbot(
        name="BasicChat",
        model="gpt-4o-mini",
        config=config
    )

    # Store chatbot ID
    chatbot_id = response.get('id')
    print(f"Created chatbot with ID: {chatbot_id}\n")

except AuthenticationError as e:
    print(f"Authentication error: {str(e)}")
except ApiError as e:
    print(f"API error: {str(e)}")

Listing Chatbots

chatbots = client.list_chatbots()
for bot in chatbots:
    print(f"Bot: {bot['name']} (ID: {bot['id']})")

Chatbot Interaction

try:
    # Example conversation
    print("=== Chatbot Interaction ===\n")
    chat_response = chatbot_client.chat(
        chatbot_id,
        "What's the weather like today?"
    )
    print(f"Chatbot: {chat_response['data']['response']}\n")

    # Get chatbot history
    print("=== Chatbot History ===\n")
    history = chatbot_client.get_history(chatbot_id)
    print(f"Chat history: {history}\n")

except ApiError as e:
    print(f"API Error: {str(e)}\n")

Updating Chatbots

updated_config = {
    "temperature": 0.8,
    "max_tokens": 1000
}

updated_bot = client.update_chatbot(
    chatbot_id=123,
    name="UpdatedBot",
    model="gpt-4o-mini",
    config=updated_config
)

Deleting Chatbots

result = client.delete_chatbot(chatbot_id=123)

Agent Operations

Creating an Agent

from client import AgentClient
from client.base_client import ApiError, AuthenticationError

# Initialize client
base_url = "http://localhost:8000"
agent_client = AgentClient(base_url)

# Set API key
api_key = "your-api-key"
agent_client.set_api_key(api_key)

try:
    # Define agent tools and configuration
    agent_tools = {
        "general": {
            "search": {
                "name": "search",
                "description": "Search for information",
                "parameters": {}
            }
        }
    }

    agent_config = {
        "model": "gpt-4o-mini",
        "temperature": 0.7,
        "max_tokens": 4000
    }

    # Create the agent
    agent = agent_client.create_agent(
        name="ResearchAgent",
        agent_type="research",
        behavior="A research agent that helps find and analyze information.",
        tools=agent_tools,
        config=agent_config
    )
    print(f"Created agent with ID: {agent['id']}\n")

except AuthenticationError as e:
    print(f"Authentication error: {str(e)}")
except ApiError as e:
    print(f"API error: {str(e)}")

Listing Agents

agents = client.list_agents()
for agent in agents:
    print(f"Agent: {agent['name']} (ID: {agent['id']})")

Agent Interaction

try:
    # Demonstrate agent interaction
    print("=== Agent Interaction ===\n")
    agent_response = agent_client.interact(
        agent['id'],
        "Find information about Python programming."
    )
    print(f"Agent response: {agent_response['data']['response']}\n")

    # Get agent state
    print("=== Agent State ===\n")
    state = agent_client.get_state(agent['id'])
    print(f"Agent state: {state}\n")

    # Demonstrate error handling
    print("=== Error Handling ===\n")
    try:
        # Try to interact with non-existent agent
        agent_client.interact("invalid-id", "Hello!")
    except ApiError as e:
        print(f"Handled API error: {str(e)}\n")

except AuthenticationError as e:
    print(f"Authentication error: {str(e)}")
except ApiError as e:
    print(f"API error: {str(e)}")
except Exception as e:
    print(f"Unexpected error: {str(e)}")

The new system simplifies command execution by:


Key features of the new command system:
- Automatic command execution and result handling
- Built-in command validation and safety checks
- Simplified tool registration using decorators
- Automatic result mapping in responses
- Support for both synchronous and asynchronous operations
- Comprehensive error handling and reporting

### Supported Commands
The client can execute various commands locally:

```python
# File operations
commands = [
    {"view_file": {"file_path": "config.json"}},
    {"smart_replace": {
        "file_path": "config.json",
        "old_text": "debug: false",
        "new_text": "debug: true"
    }},
    {"create_file": {
        "file_path": "new_file.txt",
        "content": "Hello, world!"
    }}
]

# Execute commands with safety checks
results = client.execute_commands(commands, context={})

Command Execution Safety

  • File path validation
  • Comprehensive error handling
  • Safe text replacement
  • Automatic retries for network issues
# Example with error handling
try:
    results = client.execute_commands(commands, context={})
    if any(r["status"] == "error" for r in results["command_results"]):
        print("Some commands failed to execute")
        for result in results["command_results"]:
            if result["status"] == "error":
                print(f"Error: {result['error']}")
except Exception as e:
    print(f"Execution failed: {str(e)}")

Streaming Operations

Basic Streaming

async with AgentClient("http://localhost:8000") as client:
    # Stream responses from agent
    async for event in client.interact_stream(agent_id, message):
        if event["type"] == "function_call":
            # Handle function execution
            result = await client.execute_function(event["data"])
            await client.submit_result(agent_id, event["data"]["sequence_id"], result)
        elif event["type"] == "completion":
            print(f"Completed: {event['data']}")

Concurrent Command Execution

async def process_commands(client, commands, instance_id):
    # Commands are executed concurrently
    results = await client.execute_commands(commands, instance_id)
    return results

Error Handling

The client includes comprehensive error handling with streaming support:

Streaming Error Handling

async with AgentClient("http://localhost:8000") as client:
    try:
        async for event in client.interact_stream(agent_id, message):
            if event["type"] == "error":
                print(f"Error occurred: {event['data']}")
                break
            elif event["type"] == "function_call":
                try:
                    result = await client.execute_function(event["data"])
                    await client.submit_result(
                        agent_id,
                        event["data"]["sequence_id"],
                        result
                    )
                except Exception as e:
                    print(f"Function execution error: {e}")
    except Exception as e:
        print(f"Stream error: {e}")

Command Execution Errors

try:
    results = client.execute_commands(commands, context)
    for result in results['command_results']:
        if result['status'] == 'error':
            print(f"Command {result['command']} failed: {result['error']}")
except client.CommandExecutionError as e:
    print(f"Execution error: {str(e)}")

API Errors

try:
    chatbot = client.get_chatbot(999)
except Exception as e:
    print(f"API error: {str(e)}")

Best Practices

  1. Always handle API errors in production code
  2. Store API keys securely
  3. Use appropriate timeouts for API calls
  4. Monitor rate limits
  5. Implement proper error handling
  6. Validate file paths before operations
  7. Use context information for better error tracking
  8. Implement proper retry strategies

Error Handling Best Practices

# Comprehensive error handling example
try:
    # Initial interaction
    response = client.interact_with_agent(agent_id, message)
    
    if response['status'] == 'pending_execution':
        try:
            # Execute commands with safety checks
            results = client.execute_commands(
                response['commands'],
                response.get('context', {})
            )
            
            # Check individual command results
            failed_commands = [
                r for r in results['command_results']
                if r['status'] == 'error'
            ]
            
            if failed_commands:
                print("Some commands failed:")
                for cmd in failed_commands:
                    print(f"- {cmd['command']}: {cmd['error']}")
            
            # Continue interaction with results
            final_response = client.interact_with_agent(
                agent_id,
                message,
                execution_results=results
            )
            
        except client.CommandExecutionError as e:
            print(f"Command execution failed: {e}")
            # Handle command execution failure
            
except Exception as e:
    print(f"Interaction failed: {e}")
    # Handle interaction failure

Advanced Usage

Custom Headers

client = AgentClient(
    base_url="http://localhost:8000",
    headers={"Custom-Header": "value"}
)

Batch Operations

# Create multiple chatbots
configs = [
    {"name": "Bot1", "model": "gpt-4o-mini", "config": {...}},
    {"name": "Bot2", "model": "gpt-4o-mini", "config": {...}}
]

chatbots = []
for config in configs:
    bot = client.create_chatbot(**config)
    chatbots.append(bot)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agents_client-0.1.22.tar.gz (12.1 kB view details)

Uploaded Source

Built Distribution

agents_client-0.1.22-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file agents_client-0.1.22.tar.gz.

File metadata

  • Download URL: agents_client-0.1.22.tar.gz
  • Upload date:
  • Size: 12.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for agents_client-0.1.22.tar.gz
Algorithm Hash digest
SHA256 572257502d23830451ea85d84800848464dea46dea7eb58cbe1e19e03910d3a8
MD5 3ad847a03ff6bb810bdfaa5a2da9cb47
BLAKE2b-256 ce44ab20d613f84ad2864c13527531a12893720cbb305067c5433e7205e7e524

See more details on using hashes here.

File details

Details for the file agents_client-0.1.22-py3-none-any.whl.

File metadata

File hashes

Hashes for agents_client-0.1.22-py3-none-any.whl
Algorithm Hash digest
SHA256 a203b3c5cd78c52ad7959625bf334acd89d1e537e2da86a36f643826cb02028c
MD5 5d37daf06de57dd450d36b88f91c6442
BLAKE2b-256 6a7e65cd7ab13098bbc7cca511921f490a27a0e69d37a58a4450b4d6ea86d52c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page