Skip to main content

A package for developing Open Agents

Project description

Mask-Predict

Download model

Description Dataset Model
MASK-PREDICT [WMT14 English-German] download (.tar.bz2)
MASK-PREDICT [WMT14 German-English] download (.tar.bz2)
MASK-PREDICT [WMT16 English-Romanian] download (.tar.bz2)
MASK-PREDICT [WMT16 Romanian-English] download (.tar.bz2)
MASK-PREDICT [WMT17 English-Chinese] download (.tar.bz2)
MASK-PREDICT [WMT17 Chinese-English] download (.tar.bz2)

Preprocess

text=PATH_YOUR_DATA

output_dir=PATH_YOUR_OUTPUT

src=source_language

tgt=target_language

model_path=PATH_TO_MASKPREDICT_MODEL_DIR

python preprocess.py --source-lang ${src} --target-lang ${tgt} --trainpref $text/train --validpref $text/valid --testpref $text/test --destdir ${output_dir}/data-bin --workers 60 --srcdict ${model_path}/maskPredict_${src}${tgt}/dict.${src}.txt --tgtdict ${model_path}/maskPredict${src}_${tgt}/dict.${tgt}.txt

Train

model_dir=PLACE_TO_SAVE_YOUR_MODEL

python train.py ${output_dir}/data-bin --arch bert_transformer_seq2seq --share-all-embeddings --criterion label_smoothed_length_cross_entropy --label-smoothing 0.1 --lr 5e-4 --warmup-init-lr 1e-7 --min-lr 1e-9 --lr-scheduler inverse_sqrt --warmup-updates 10000 --optimizer adam --adam-betas '(0.9, 0.999)' --adam-eps 1e-6 --task translation_self --max-tokens 8192 --weight-decay 0.01 --dropout 0.3 --encoder-layers 6 --encoder-embed-dim 512 --decoder-layers 6 --decoder-embed-dim 512 --fp16 --max-source-positions 10000 --max-target-positions 10000 --max-update 300000 --seed 0 --save-dir ${model_dir}

Evaluation

python generate_cmlm.py ${output_dir}/data-bin --path ${model_dir}/checkpoint_best_average.pt --task translation_self --remove-bpe --max-sentences 20 --decoding-iterations 10 --decoding-strategy mask_predict

License

MASK-PREDICT is CC-BY-NC 4.0. The license applies to the pre-trained models as well.

Citation

Please cite as:

@inproceedings{ghazvininejad2019MaskPredict,
  title = {Mask-Predict: Parallel Decoding of Conditional Masked Language Models},
  author = {Marjan Ghazvininejad, Omer Levy, Yinhan Liu, Luke Zettlemoyer},
  booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing},
  year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agentweb-0.1.0.tar.gz (143.2 kB view details)

Uploaded Source

Built Distribution

agentweb-0.1.0-py3-none-any.whl (211.9 kB view details)

Uploaded Python 3

File details

Details for the file agentweb-0.1.0.tar.gz.

File metadata

  • Download URL: agentweb-0.1.0.tar.gz
  • Upload date:
  • Size: 143.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for agentweb-0.1.0.tar.gz
Algorithm Hash digest
SHA256 b8b3b1d4cba7ff2ae6e768a6a007d2092526d002c9fc835b92ef9302e3e407cd
MD5 f10a26efa20fc1ffa9ff6c8a86968097
BLAKE2b-256 237fd67c591b9409d4ef09f32fe32840123e1b765344d3861fc3b2cb88aac135

See more details on using hashes here.

File details

Details for the file agentweb-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: agentweb-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 211.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for agentweb-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 dbbcba570af6d414552c9ff49651f75844d4de75b2644a3c1035af66e944902b
MD5 3afdc9f1b28dd8252b18e3e752a8e481
BLAKE2b-256 29254f38a402ce83ea7c53d7b9535139d0ea04d5bbf562fed0ccd5ab21b5ee40

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page