Skip to main content

A MongoDB aggregation generator for Mongoengine

Project description

Aggify

Aggify is a Python library for generating MongoDB aggregation pipelines, designed to work seamlessly with Mongoengine. This library simplifies the process of constructing complex MongoDB queries and aggregations using an intuitive and organized interface.

Features

  • Programmatically build MongoDB aggregation pipelines.
  • Filter, project, group, and perform various aggregation operations with ease.
  • Supports querying nested documents and relationships defined using Mongoengine.
  • Encapsulates aggregation stages for a more organized and maintainable codebase.
  • Designed to simplify the process of constructing complex MongoDB queries.

TODO

  • $replaceRoot: Replaces the document structure with a new one.
  • $project (with expressions): Allows you to use expressions to reshape and calculate values.
  • $redact: Controls document inclusion during the aggregation pipeline.

Installation

You can install Aggify using pip:

pip install aggify

Sample Usage

Here's a code snippet that demonstrates how to use Aggify to construct a MongoDB aggregation pipeline:

from mongoengine import Document, fields


class AccountDocument(Document):
    username = fields.StringField()
    display_name = fields.StringField()
    phone = fields.StringField()
    is_verified = fields.BooleanField()
    disabled_at = fields.LongField()
    deleted_at = fields.LongField()
    banned_at = fields.LongField()

class PostDocument(Document):
    owner = fields.ReferenceField('AccountDocument', db_field='owner_id')
    caption = fields.StringField()
    location = fields.StringField()
    comment_disabled = fields.BooleanField()
    stat_disabled = fields.BooleanField()
    hashtags = fields.ListField()
    archived_at = fields.LongField()
    deleted_at = fields.LongField()

Aggify query:

from aggify import Aggify, Q, F

query = Aggify(PostDocument)

query.filter(deleted_at=None, caption__contains='Aggify').order_by('-_id').lookup(
        AccountDocument, query=[
            Q(_id__exact='owner') & Q(deleted_at=None),
            Q(is_verified__exact=True)
        ], let=['owner'], as_name='owner'
    ).filter(owner__ne=[]).add_fields({
        "aggify": "Aggify is lovely",
    }
    ).project(caption=0).out("post").pipelines

Mongoengine equivalent query:

[
        {
            '$match': {
                'caption': {
                    '$options': 'i',
                    '$regex': '.*Aggify.*'
                },
                'deleted_at': None
            }
        },
        {
            '$sort': {
                '_id': -1
            }
        },
        {
            '$lookup': {
                'as': 'owner',
                'from': 'account',
                'let': {
                    'owner': '$owner_id'
                },
                'pipeline': [
                    {
                        '$match': {
                            '$expr': {
                                '$and': [
                                    {
                                        '$eq': ['$_id', '$$owner']
                                    },
                                    {
                                        'deleted_at': None
                                    }
                                ]
                            }
                        }
                    },
                    {
                        '$match': {
                            '$expr': {
                                '$eq': ['$is_verified', True]
                            }
                        }
                    }
                ]
            }
        },
        {
            '$match': {
                'owner': {'$ne': []}
            }
        },
        {
            '$addFields': {
                'aggify': {
                    '$literal': 'Aggify is lovely'
                }
            }
        },
        {
            '$project': {
                'caption': 0
                }
        },
        {
            '$out': 'post'
        }
]

In the sample usage above, you can see how Aggify simplifies the construction of MongoDB aggregation pipelines by allowing you to chain filters, lookups, and other operations to build complex queries. For more details and examples, please refer to the documentation and codebase.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aggify-0.2.1.tar.gz (12.0 kB view details)

Uploaded Source

Built Distribution

aggify-0.2.1-py3-none-any.whl (12.6 kB view details)

Uploaded Python 3

File details

Details for the file aggify-0.2.1.tar.gz.

File metadata

  • Download URL: aggify-0.2.1.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for aggify-0.2.1.tar.gz
Algorithm Hash digest
SHA256 0a530ac31587bc5bd48db3a46d9f1d874a41316c8b6737fd73a3a1152a2962b5
MD5 70d5863684653111689ce9e8dbfda019
BLAKE2b-256 ed8279a145cd9f570a8b65bdf7cc901b5ffc3fb24400d4f428f9ff3c3ff97605

See more details on using hashes here.

Provenance

File details

Details for the file aggify-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: aggify-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for aggify-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a7e34464a1efb46ac89ccb8fae8ca5a265f0f2175f9a3a6e7f5e74f98232a054
MD5 489e05755cd09b814c196c74b10b91d7
BLAKE2b-256 e9b1c2448ebd0848df74f694fccf09ab74115ac4c7130c97b37e5b97c7c03632

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page