Skip to main content

A jax wrapper for autograd-differentiable functions.

Project description

Agjax -- jax wrapper for autograd-differentiable functions.

v0.3.3

Agjax allows existing code built with autograd to be used with the jax framework.

In particular, agjax.wrap_for_jax allows arbitrary autograd functions ot be differentiated using jax.grad. Several other function transformations (e.g. compilation via jax.jit) are not supported.

Meanwhile, agjax.experimental.wrap_for_jax supports grad, jit, vmap, and jacrev. However, it depends on certain under-the-hood behavior by jax, which is not guaranteed to remain unchanged. It also is more restrictive in terms of the valid function signatures of functions to be wrapped: all arguments and outputs must be convertible to valid jax types. (agjax.wrap_for_jax also supports non-jax inputs and outputs, e.g. strings.)

Installation

pip install agjax

Usage

Basic usage is as follows:

@agjax.wrap_for_jax
def fn(x, y):
  return x * npa.cos(y)

jax.grad(fn, argnums=(0,  1))(1.0, 0.0)

# (Array(1., dtype=float32), Array(0., dtype=float32))

The experimental wrapper is similar, but requires that the function outputs and datatypes be specified, simiilar to jax.pure_callback.

wrapped_fn = agjax.experimental.wrap_for_jax(
  lambda x, y: x * npa.cos(y),
  result_shape_dtypes=jnp.ones((5,)),
)

jax.jacrev(wrapped_fn, argnums=0)(jnp.arange(5, dtype=float), jnp.arange(5, 10, dtype=float))

# [[ 0.28366217  0.          0.          0.          0.        ]
#  [ 0.          0.96017027  0.          0.          0.        ]
#  [ 0.          0.          0.75390226  0.          0.        ]
#  [ 0.          0.          0.         -0.14550003  0.        ]
#  [ 0.          0.          0.          0.         -0.91113025]]

Agjax wrappers are intended to be quite general, and can support functions with multiple inputs and outputs as well as functions that have nondifferentiable outputs or arguments that cannot be differentiated with respect to. These should be specified using nondiff_argnums and nondiff_outputnums arguments. In the experimental wrapper, these must still be jax-convertible types, while in the standard wrapper they may have arbitrary types.

@functools.partial(
  agjax.wrap_for_jax, nondiff_argnums=(2,), nondiff_outputnums=(1,)
)
def fn(x, y, string_arg):
  return x * npa.cos(y), string_arg * 2

(value, aux), grad = jax.value_and_grad(
  fn, argnums=(0, 1), has_aux=True
)(1.0, 0.0, "test")

print(f"value = {value}")
print(f"  aux = {aux}")
print(f" grad = {grad}")
value = 1.0
  aux = testtest
 grad = (Array(1., dtype=float32), Array(0., dtype=float32))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agjax-0.3.3.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

agjax-0.3.3-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file agjax-0.3.3.tar.gz.

File metadata

  • Download URL: agjax-0.3.3.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for agjax-0.3.3.tar.gz
Algorithm Hash digest
SHA256 427a205d433fb558951bb5f82cfe8238c305d9193bf54701d2a0b9ecfe05bfd6
MD5 851916f116a00b682388d60e80599868
BLAKE2b-256 4d4343e45335a8d98765db275b11e3bd3fa57ecdfe0e4702dd4a8b624d123069

See more details on using hashes here.

File details

Details for the file agjax-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: agjax-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for agjax-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 1163eee2c16d4587e72c4e10529e29f48932bb6de0787b954c172650c932847e
MD5 19d7b7a36977fa5d18b45ada8e053a0c
BLAKE2b-256 9881dd55d69e71c85b9ef569c730cb22f66df69bf23aa0393a5bc951d9c6220c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page