Skip to main content

Statistical modeling tools, to unify model creation and scoring based on python

Project description

Agmodeling
===========
Statistical modeling tools, to unify model creation and scoring based on python

package agmodeling.setscoring implements a part of the SET method for comparing
sensor output as described by :

An Evaluation Tool Kit of Air Quality 1 Micro-Sensing Units
(Barak Fishbain1,Uri Lerner, Nuria Castell-Balaguer)



What's New
===========
- (2018/11) First version (v 0.3)



Dependencies
=============

Agmodeling is written to be use with python 2.7
It requires Pandas, numpy and scipy
It requires `Pandas`::

pip install pandas
pip install numpy
pip install scipy


Installations
=============

pip install agmodeling


Uses cases
==========

from agmodeling.scoring.set_method import get_IPI_score
import pandas as pd

file = u'sample_data.xlsx'
print (u'Read excel data file : %s'%file)
df = pd.read_excel(file)
ipi = get_IPI_score(df[u'PM10_REF'], df[u'PM10_MOD_EARTH'])
print ipi

Match : RMSE : Pearson : Kendall : Spearman : LFE :: IPI
0.763240 : 0.061937 : 0.909195 : 0.657553 : 0.832455 : 0.990418 :: 0.848801

0.848801


You can run the whole demo inside the package

cd demo
python .\demo_SET_scoring.py
Read excel data file : sample_data.xlsx
containing 2568 data

Score IPI for PM25_RAW
Match : RMSE : Pearson : Kendall : Spearman : LFE :: IPI
0.492835 : 0.238941 : 0.639916 : 0.417968 : 0.575632 : 0.980072 :: 0.648981

Score IPI for PM25_MOD_QUAD
Match : RMSE : Pearson : Kendall : Spearman : LFE :: IPI
0.687539 : 0.102816 : 0.747821 : 0.524258 : 0.695786 : 0.980072 :: 0.756295

Score IPI for PM25_MOD_EARTH
Match : RMSE : Pearson : Kendall : Spearman : LFE :: IPI
0.648910 : 0.092760 : 0.800773 : 0.537126 : 0.713852 : 0.980072 :: 0.765357

Score IPI for PM10_RAW
Match : RMSE : Pearson : Kendall : Spearman : LFE :: IPI
0.486604 : 0.264435 : 0.454199 : 0.269705 : 0.393423 : 0.990418 :: 0.560331

Score IPI for PM10_MOD_QUAD
Match : RMSE : Pearson : Kendall : Spearman : LFE :: IPI
0.742056 : 0.074365 : 0.866073 : 0.612143 : 0.789426 : 0.990418 :: 0.821408

Score IPI for PM10_MOD_EARTH
Match : RMSE : Pearson : Kendall : Spearman : LFE :: IPI
0.763240 : 0.061937 : 0.909195 : 0.657553 : 0.832455 : 0.990418 :: 0.848801

========================================
Results :
RAW MOD_QUAD MOD_EARTH
PM10 0.560331 0.821408 0.848801
PM25 0.648981 0.756295 0.765357

Fin du programme



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agmodeling-0.3.tar.gz (5.9 kB view hashes)

Uploaded source

Built Distribution

agmodeling-0.3-py2-none-any.whl (7.1 kB view hashes)

Uploaded py2

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page