Skip to main content

AHP in Python

Project description

AHP

层次分析法

How to use

Install

pip install ahp

use

from AHP import AHP
import numpy as np

# 准则重要性矩阵
criteria = np.array([[1, 2, 7, 5, 5],
                     [1 / 2, 1, 4, 3, 3],
                     [1 / 7, 1 / 4, 1, 1 / 2, 1 / 3],
                     [1 / 5, 1 / 3, 2, 1, 1],
                     [1 / 5, 1 / 3, 3, 1, 1]])

# 对每个准则,方案优劣排序
b1 = np.array([[1, 1 / 3, 1 / 8], [3, 1, 1 / 3], [8, 3, 1]])
b2 = np.array([[1, 2, 5], [1 / 2, 1, 2], [1 / 5, 1 / 2, 1]])
b3 = np.array([[1, 1, 3], [1, 1, 3], [1 / 3, 1 / 3, 1]])
b4 = np.array([[1, 3, 4], [1 / 3, 1, 1], [1 / 4, 1, 1]])
b5 = np.array([[1, 4, 1 / 2], [1 / 4, 1, 1 / 4], [2, 4, 1]])

b = [b1, b2, b3, b4, b5]
a = AHP(criteria, b).run()

打印:

==========准则层==========
最大特征值5.072084,CR=0.014533,检验通过
准则层权重 = [0.47583538 0.26360349 0.0538146  0.09806829 0.10867824]

==========方案层==========
          方案0       方案1       方案2     最大特征值            CR  一致性检验
准则0  0.081935  0.236341  0.681725  3.001542  8.564584e-04   True
准则1  0.595379  0.276350  0.128271  3.005535  3.075062e-03   True
准则2  0.428571  0.428571  0.142857  3.000000 -4.934325e-16   True
准则3  0.633708  0.191921  0.174371  3.009203  5.112618e-03   True
准则4  0.344545  0.108525  0.546931  3.053622  2.978976e-02   True

==========目标层==========
[[0.318586   0.23898522 0.44242878]]
最优选择是方案2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AHP-0.0.1.tar.gz (3.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

AHP-0.0.1-py3-none-any.whl (3.4 kB view details)

Uploaded Python 3

File details

Details for the file AHP-0.0.1.tar.gz.

File metadata

  • Download URL: AHP-0.0.1.tar.gz
  • Upload date:
  • Size: 3.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.6.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for AHP-0.0.1.tar.gz
Algorithm Hash digest
SHA256 ab75ab7b775c7319c5b1a65ff9cf33deed222b4094957680a273d22d4468f3c9
MD5 1c42bdc11ab4090e0801ed74dec18324
BLAKE2b-256 d3b99dc234a7051b1c66b87897f2f1df024705b4cf3320810cdaefa1e9e6ab15

See more details on using hashes here.

File details

Details for the file AHP-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: AHP-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 3.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.6.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for AHP-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f16f699a8a9858c5f7f3dbfbb64895d54a8cf4e703e394f4236bdd66d3129fc7
MD5 0662896be2f2d075b5af52aaa7285318
BLAKE2b-256 e4cbe13751b706129406c61c5abda077568607f9c06e7976af02a004dd2109d7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page