Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241120-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241120-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241120-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241120-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241120-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241120-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241120-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241120-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241120-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241120-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 bafc4c32200a667543335db399a750a143e1419b143bd60b1155050fd3d898c3
MD5 97dbd365b6d565abd73963cb4610c670
BLAKE2b-256 b50caac677250dbc5a04b075a31912e27f8f1ff378af19ef9a352eb175db7538

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241120-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241120-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 069ae287a5bc3a45bef41fbc2ec7ed11209fe115b5ef5bd903cbbd2b3bf467a6
MD5 2bc2c7375fec700504fccb207f0681c2
BLAKE2b-256 8e921e5b82e7c6bc02beac791ca6005ef7b859a26bafbb5c8323a771b0e11751

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241120-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241120-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 0350200f9744121ddddcf94e9046e632a372b8206fef0bb75b7889693ea48771
MD5 5f1523fc6b69ab2ddec60d54ed477775
BLAKE2b-256 6315ca3281144b9ccbc59335fd94cddd85a38a257f3b6562063fbb8300451cc6

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241120-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241120-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b36cf5592b9518e676f2b05665305d723a15ea88a91f5793682ea619948667ab
MD5 a79693f75efb58ac2f0e14d6aeef416c
BLAKE2b-256 ef243e39bb088b890b3d01506901eb2190f83817f8f2b0e8d5ecbf2ceff0c923

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241120-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241120-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 520c48eebd890de368e9a679f5163b47aba271be09bfc47f18210a8ee05177c9
MD5 b74a6a770053669812560646a190868d
BLAKE2b-256 410816f463a66c37a81ea9ac1a1722594a7025d830d16ce7a19c68a96b1b7e3f

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241120-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241120-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e72df3980fb924b7a2e76c911d7236f2879b49609b5de28af16b3ef707e23af8
MD5 670e64aba984530323c5ef3cd52b8489
BLAKE2b-256 031c1df64332a52262153ffad87786ec5d7996e240a83c43cd709257f4988943

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241120-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241120-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 edfe990a77c47b6bdae9a768a90b2e5688b42293f4d16730ba4928aa1ff17efb
MD5 5aa8c867cc29d50984f50a3282355bc3
BLAKE2b-256 12cef534141a7107891b103433c8bc8d027a58144431051c9561e783d7930af7

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241120-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241120-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 66a1ce4a1c108bce36706d6d55f345ac55a5d284ca8c343c4ae4e5bb5a0bfe47
MD5 69b429fb467bdb6eee0f154e4bee01b2
BLAKE2b-256 d834211de2cb8b50c30ca550df2571c847581dded0b51b4d2d95955cfae4a8e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page