Skip to main content

A harness project for ML & DL

Project description

AI Harness

Introduction

This project would like to supply some convenient tools for the machine learning and deep learning. Current features:

  • XMLConfiguration: for loading a configuration defined in xml files into a Python Object
  • Arguments: Mapping a Python Object to the arguments of argparse
  • inspector: Some convenient method for class/object
  • executors: Some convenient ProcessExecutor
  • fileutils: DirectoryNavigator, FileReadPipeLine
  • others:

Log

  • 2019.4.18, version: 0.3.0: Added distributed training tools for python
  • 2019.4.23, version: 0.3.5: Added a Json file Reader
  • 2019.4.24, version: 0.3.6: Added a data utils for processing data
  • 2019.4.26, version: 0.3.7 Added a data utils for processing data for zip file
  • 2019.4.28, version: 0.3.8 Added QueueExecutor

Examples

1. XMLConfiguration

(1) Define the configuration in xml file like:
<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
    <arg name="name" default="TestName" help="Name Test Help"/>
    <arg name="age" default="20" help="Age Test Help"/>
    <group name="address">
        <arg name="home" default="shanghai" help="Home test Help"/>
        <arg name="phone" default="136" help="Phone test Help"/>
    </group>
    <group name="education">
        <arg name="school" default="beijing" help="school test Help"/>
        <arg name="grade" default="master" help="grade test Help"/>
    </group>
</configuration>

you can define multiple xml configuration files, and if the name is same, the value of the later will cover the previous.

(3) Define the configuration class like:

from aiharness.configuration import configclass,field

@configclass
class Address:
    phone: int = field(139, "phone help")
    home: str = field("beijing", "phone help")


@configclass
class Education:
    school: str = field('ustb', "phone help")
    grade: str = field("master", "phone help")


@configclass
class Config:
    name: str = field("test", "name help")
    age: str = field(10, "age help")
    address: Address = Address()
    education: Education = Education()

(3) Load the xml configuration into python object as folling:

from aiharness.configuration import XmlConfiguration

config:Config=XmlConfiguration(Config).load(['configuration1.xml','configuration2.xml'])

Arguments Example

Generally, we use argparse as following:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--name",default='TEST',help='name help')
parser.add_argument("--age",default=18,help='age help')
arguments=parser.parse_args()

And you can got a arguments object.

Here give an example showing how to load a xml configuration and set to argparse arguments and to parse the arguments into a object you defined. And here the Config Class and 'configuration.xml' are same with those of the Configuration example.

Firstly, in fact, the Config Class instead of the codes of 'add_argument' of the argparse.ArgumentParser. Secondly, you can put the configuration into a xml file so that you can change it conveniently.

from aiharness.configuration import  Arguments, XmlConfiguration

config: Config = XmlConfiguration(Config).load(['configuration.xml'])
arguments = Arguments(config)
config: Config = arguments.parse()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ai-harness-0.4.32.tar.gz (84.1 kB view details)

Uploaded Source

Built Distribution

ai_harness-0.4.32-py2.py3-none-any.whl (83.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ai-harness-0.4.32.tar.gz.

File metadata

  • Download URL: ai-harness-0.4.32.tar.gz
  • Upload date:
  • Size: 84.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.15.0 CPython/3.6.9

File hashes

Hashes for ai-harness-0.4.32.tar.gz
Algorithm Hash digest
SHA256 94dfaea4875a6dc8724cebfc0c84aae8a8b71ac363c1ba92c750b8ed2e617198
MD5 485116891fa48d36e6656883af5b6161
BLAKE2b-256 c7b4698e1df82623a256760e29a9ec1aa2e8ddb2b8546338747d454780fe2fb0

See more details on using hashes here.

File details

Details for the file ai_harness-0.4.32-py2.py3-none-any.whl.

File metadata

  • Download URL: ai_harness-0.4.32-py2.py3-none-any.whl
  • Upload date:
  • Size: 83.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.15.0 CPython/3.6.9

File hashes

Hashes for ai_harness-0.4.32-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 8657792224b2c3898a17a2ba370440572a2105160e6791fcfb1326814e0173d3
MD5 a9f6e4403f625adc68c39a9604f2875f
BLAKE2b-256 8b26b36824d21a3434e34392e972225c3d6a4fdb85412af4f8ed508bf677c82d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page