Skip to main content

This is a toolbox to help AI & ML teams to have a better management of their metrics.

Project description

Artificial Intelligence Management

This is a toolbox to help AI & ML teams to have a better management of their metrics and processes.

Our desire is to enable the company with data related to AI solution, in a easy way to read and use. Some new goals are going to be included later

Confluence Documentation Link

Tangram Link

Table of Contents

Project Structure

Describe the structure of the project folder, including the organization of modules, directories, and any important files.

ai_management/
├── __init__.py
├── model_evaluation.py
├── config.yaml

Explain the purpose of each module or significant files.

ModelEvaluation

Historize the technical model evaluation results at a Google Big Query table at a Google Cloud Platform project.

Installation

pip install ai-management

Usage

Binary classification

y_true = [1, 0, 0, 1, 1]
y_pred = [1, 0, 0, 0, 1]

y_test_a_lst = y_true
y_pred_a_lst = y_pred

y_test_a_arr = np.array(y_true)
y_pred_a_arr = np.array(y_pred)

Multi class classification

y_true = [0, 1, 2, 1, 2]
y_pred = [[0.9, 0.1, 0.0], [0.3, 0.2, 0.5], [0.2, 0.3, 0.5], [0.1, 0.8, 0.1], [0.1, 0.2, 0.7]]

y_test_b_lst = y_true
y_pred_b_lst = y_pred

y_test_b_arr = np.array(y_true)
y_pred_b_arr = np.array(y_pred)

Multi label classification

y_test = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
y_pred = [[0, 1, 2], [3, 4, 5], [6, 7, 9]]

y_test_c_lst = y_test
y_pred_c_lst = y_pred

y_test_c_arr = np.array(y_true)
y_pred_c_arr = np.array(y_pred)

Regression

y_true = [2.5, 3.0, 4.0, 5.5, 6.0]
y_pred = [2.0, 3.5, 3.8, 5.0, 6.5]

y_test_d_lst = y_true
y_pred_d_lst = y_pred

y_test_d_arr = np.array(y_true)
y_pred_d_arr = np.array(y_pred)

Assossiation Rules

import pandas as pd
import numpy as np

# Create a dataframe with random values
df_assossiation = pd.DataFrame({
    'ID_PRNCPAL': np.random.randint(1, 50000, size=103846),
    'CONFIDENCE': np.random.uniform(0.01, 0.03, size=103846)
})

df_assossiation.sort_values('ID_PRNCPAL')

Solution Evaluation

import ai_management as aim 
client_bq = bigquery.Client(project='project')
me = aim.ModelEvaluation(
    client_bq=client_bq,
    destination='project.dataset.table'
)

# Historizing standard metrics
me.historize_model_evaluation(
    soltn_nm = 'Solution X', 
    lst_mdls = [
        {
            'mdl_nm' : 'Model A',
            'algrthm_typ' : 'binary_classification',
            'data' : [y_test_a_lst, y_pred_a_lst]}, 
        {
            'mdl_nm' : 'Model B',
            'algrthm_typ' : 'multi_class_classification',
            'data' : [y_test_b_lst, y_pred_b_lst]},
        {
            'mdl_nm' : 'Model C',
            'algrthm_typ' : 'multi_label_classification',
            'data' : [y_test_c_lst, y_pred_c_lst]},
        {
            'mdl_nm' : 'Model D',
            'algrthm_typ' : 'assossiation',
            'data' : ['confidence', df_assossiation]},
    ]
)

# Historizing custom metrics
me.historize_custom_metric(
    soltn_nm = "Solution Y",
    lst_mdls = [
        {
            'mdl_nm': 'Model E',
            'algrthm_typ': 'regression',
            'data': [
                ["Lin's Concordance Correlation Coefficient", 0.85, None],
                ["Huber's error", 123, {"delta": 0.75}],
            ]
        },
    ]
)

Contact

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ai_management-1.0.40.tar.gz (10.9 kB view details)

Uploaded Source

Built Distribution

ai_management-1.0.40-py3-none-any.whl (22.9 kB view details)

Uploaded Python 3

File details

Details for the file ai_management-1.0.40.tar.gz.

File metadata

  • Download URL: ai_management-1.0.40.tar.gz
  • Upload date:
  • Size: 10.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for ai_management-1.0.40.tar.gz
Algorithm Hash digest
SHA256 883173bbce3760ce490472ad4ea37051fc917180d06ddf9c4a9971eb003f07df
MD5 aeb9412e8e4215c63219022184df71b2
BLAKE2b-256 bd033a86ba2e45e4567d256559f4e7d6754f99e0955d632dbc8b0c041ad69f28

See more details on using hashes here.

File details

Details for the file ai_management-1.0.40-py3-none-any.whl.

File metadata

File hashes

Hashes for ai_management-1.0.40-py3-none-any.whl
Algorithm Hash digest
SHA256 014c2fc611ec9ab402327d25e9716785172f9c580bcadf3bd149d0013de2d0a0
MD5 ad9347c756ce905a1a5585064575f040
BLAKE2b-256 6d64b478c28fb2184513877d6703019d0882a4f73b876de5ac6492a1cde52a6c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page