This is a toolbox to help AI & ML teams to have a better management of their metrics.
Project description
Artificial Intelligence Management
This is a toolbox to help AI & ML teams to have a better management of their metrics and processes.
Our desire is to enable the company with data related to AI solution, in a easy way to read and use. Some new goals are going to be included later
Table of Contents
Project Structure
Describe the structure of the project
folder, including the organization of modules, directories, and any important files.
ai_management/
├── __init__.py
├── model_evaluation.py
├── config.yaml
Explain the purpose of each module or significant files.
ModelEvaluation
Historize the technical model evaluation results at a Google Big Query table at a Google Cloud Platform project.
Installation
pip install ai-management
Usage
Binary classification
y_true = [1, 0, 0, 1, 1]
y_pred = [1, 0, 0, 0, 1]
y_test_a_lst = y_true
y_pred_a_lst = y_pred
y_test_a_arr = np.array(y_true)
y_pred_a_arr = np.array(y_pred)
Multi class classification
y_true = [0, 1, 2, 1, 2]
y_pred = [[0.9, 0.1, 0.0], [0.3, 0.2, 0.5], [0.2, 0.3, 0.5], [0.1, 0.8, 0.1], [0.1, 0.2, 0.7]]
y_test_b_lst = y_true
y_pred_b_lst = y_pred
y_test_b_arr = np.array(y_true)
y_pred_b_arr = np.array(y_pred)
Multi label classification
y_test = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
y_pred = [[0, 1, 2], [3, 4, 5], [6, 7, 9]]
y_test_c_lst = y_test
y_pred_c_lst = y_pred
y_test_c_arr = np.array(y_true)
y_pred_c_arr = np.array(y_pred)
Regression
y_true = [2.5, 3.0, 4.0, 5.5, 6.0]
y_pred = [2.0, 3.5, 3.8, 5.0, 6.5]
y_test_d_lst = y_true
y_pred_d_lst = y_pred
y_test_d_arr = np.array(y_true)
y_pred_d_arr = np.array(y_pred)
Assossiation Rules
import pandas as pd
import numpy as np
# Create a dataframe with random values
df_assossiation = pd.DataFrame({
'ID_PRNCPAL': np.random.randint(1, 50000, size=103846),
'CONFIDENCE': np.random.uniform(0.01, 0.03, size=103846)
})
df_assossiation.sort_values('ID_PRNCPAL')
Solution Evaluation
import ai_management as aim
client_bq = bigquery.Client(project='project')
me = aim.ModelEvaluation(
client_bq=client_bq,
destination='project.dataset.table'
)
# Historizing standard metrics
me.historize_model_evaluation(
soltn_nm = 'Solution X',
lst_mdls = [
{
'mdl_nm' : 'Model A',
'algrthm_typ' : 'binary_classification',
'data' : [y_test_a_lst, y_pred_a_lst]},
{
'mdl_nm' : 'Model B',
'algrthm_typ' : 'multi_class_classification',
'data' : [y_test_b_lst, y_pred_b_lst]},
{
'mdl_nm' : 'Model C',
'algrthm_typ' : 'multi_label_classification',
'data' : [y_test_c_lst, y_pred_c_lst]},
{
'mdl_nm' : 'Model D',
'algrthm_typ' : 'assossiation',
'data' : ['confidence', df_assossiation]},
]
)
# Historizing custom metrics
me.historize_custom_metric(
soltn_nm = "Solution Y",
lst_mdls = [
{
'mdl_nm': 'Model E',
'algrthm_typ': 'regression',
'data': [
["Lin's Concordance Correlation Coefficient", 0.85, None],
["Huber's error", 123, {"delta": 0.75}],
]
},
]
)
Contact
- Leroy Merlin Brazil AI scientists and developers: chapter_inteligencia_artificia@leroymerlin.com.br
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ai_management-1.0.40.tar.gz
.
File metadata
- Download URL: ai_management-1.0.40.tar.gz
- Upload date:
- Size: 10.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 883173bbce3760ce490472ad4ea37051fc917180d06ddf9c4a9971eb003f07df |
|
MD5 | aeb9412e8e4215c63219022184df71b2 |
|
BLAKE2b-256 | bd033a86ba2e45e4567d256559f4e7d6754f99e0955d632dbc8b0c041ad69f28 |
File details
Details for the file ai_management-1.0.40-py3-none-any.whl
.
File metadata
- Download URL: ai_management-1.0.40-py3-none-any.whl
- Upload date:
- Size: 22.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 014c2fc611ec9ab402327d25e9716785172f9c580bcadf3bd149d0013de2d0a0 |
|
MD5 | ad9347c756ce905a1a5585064575f040 |
|
BLAKE2b-256 | 6d64b478c28fb2184513877d6703019d0882a4f73b876de5ac6492a1cde52a6c |