Skip to main content

# Minimalistic Foundation for AI Applications

Project description

Release Notes Code Quality Pylint Tests License

AI MicroCore: A Minimalistic Foundation for AI Applications

microcore is a collection of python adapters for Large Language Models and Semantic Search APIs allowing to communicate with these services in a convenient way, make it easily switchable and separate business logic from implementation details.

It defines interfaces for features typically used in AI applications, that allows you to keep your application as simple as possible and try various models & services without need to change your application code.

You even can switch between text completion and chat completion models only using configuration.

The basic example of usage is as follows:

from microcore import llm

while user_msg := input('Enter message: '):
    print('AI: ' + llm(user_msg))

🔗 Links

💻 Installation

Install as PyPi package:

pip install ai-microcore

Alternatively, you may just copy microcore folder to your project sources root.

git clone git@github.com:Nayjest/ai-microcore.git && mv ai-microcore/microcore ./ && rm -rf ai-microcore

📋 Requirements

Python 3.10+ / 3.11+

Both v0.28.X and v1.x.x OpenAI package versions are supported.

⚙️ Configuring

Minimal Configuration

Having OPENAI_API_KEY in OS environment variables is enough for basic usage.

Similarity search features will work out of the box if you have the chromadb pip package installed.

Configuration Methods

There are a few options available for configuring microcore:

  • Use microcore.configure()
    💡 All configuration options should be available in IDE autocompletion tooltips
  • Create a .env file in your project root (example)
  • Use a custom configuration file: mc.configure(DOT_ENV_FILE='dev-config.ini')
  • Define OS environment variables

For the full list of available configuration options, you may also check microcore/config.py.

Priority of Configuration Sources

  1. Configuration options passed as arguments to microcore.configure() have the highest priority.
  2. The priority of configuration file options (.env by default or the value of DOT_ENV_FILE) is higher than OS environment variables.
    💡 Setting USE_DOT_ENV to false disables reading configuration files.
  3. OS environment variables have the lowest priority.

🌟 Core Functions

llm(prompt: str, **kwargs) → str

Performs a request to a large language model (LLM)

from microcore import *

# Will print all requests and responses to console
use_logging()

# Basic usage
ai_response = llm('What is your model name?')

# You also may pass a list of strings as prompt
# - For chat completion models elements are treated as separate messages
# - For completion LLMs elements are treated as text lines
llm(['1+2', '='])
llm('1+2=', model='gpt-4')

# To specify a message role, you can use dictionary or classes
llm(dict(role='system', content='1+2='))
# equivalent
llm(SysMsg('1+2='))

# The returned value is a string
assert '7' == llm([
 SysMsg('You are a calculator'),
 UserMsg('1+2='),
 AssistantMsg('3'),
 UserMsg('3+4=')]
).strip()

# But it contains all fields of the LLM response in additional attributes
for i in llm('1+2=?', n=3, temperature=2).choices:
    print('RESPONSE:', i.message.content)

# To use response streaming you may specify the callback function:
llm('Hi there', callback=lambda x: print(x, end=''))

# Or multiple callbacks:
output = []
llm('Hi there', callbacks=[
    lambda x: print(x, end=''),
    lambda x: output.append(x),
])

tpl(file_path, **params) → str

Renders prompt template with params.

Full-featured Jinja2 templates are used by default.

Related configuration options:

from microcore import configure
configure(
    # 'tpl' folder in current working directory by default
    PROMPT_TEMPLATES_PATH = 'my_templates_folder'
)

texts.search(collection: str, query: str | list, n_results: int = 5, where: dict = None, **kwargs) → list[str]

Similarity search

texts.find_one(self, collection: str, query: str | list) → str | None

Find most similar text

texts.get_all(self, collection: str) -> list[str]

Return collection of texts

texts.save(collection: str, text: str, metadata: dict = None))

Store text and related metadata in embeddings database

texts.save_many(collection: str, items: list[tuple[str, dict] | str])

Store multiple texts and related metadata in the embeddings database

texts.clear(collection: str):

Clear collection

API providers and models support

LLM Microcore supports all models & API providers having OpenAI API.

List of API providers and models tested with LLM Microcore:

API Provider Models
OpenAI All GPT-4 and GTP-3.5-Turbo models
all text completion models (davinci, gpt-3.5-turbo-instruct, etc)
Microsoft Azure All OpenAI models
deepinfra.com deepinfra/airoboros-70b
jondurbin/airoboros-l2-70b-gpt4-1.4.1
meta-llama/Llama-2-70b-chat-hf
and other models having OpenAI API
Anyscale meta-llama/Llama-2-70b-chat-hf
meta-llama/Llama-2-13b-chat-hf
meta-llama/Llama-7b-chat-hf

🖼️ Examples

code-review-tool example

Performs code review by LLM for changes in git .patch files in any programming languages.

Other examples

Python functions as AI tools

@TODO

🤖 AI Modules

This is experimental feature.

Tweaks the Python import system to provide automatic setup of MicroCore environment based on metadata in module docstrings.

Usage:

import microcore.ai_modules

Features:

  • Automatically registers template folders of AI modules in Jinja2 environment

🛠️ Contributing

Please see CONTRIBUTING for details.

📝 License

Licensed under the MIT License © 2023 Vitalii Stepanenko

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ai_microcore-0.7.13.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

ai_microcore-0.7.13-py3-none-any.whl (27.0 kB view details)

Uploaded Python 3

File details

Details for the file ai_microcore-0.7.13.tar.gz.

File metadata

  • Download URL: ai_microcore-0.7.13.tar.gz
  • Upload date:
  • Size: 22.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for ai_microcore-0.7.13.tar.gz
Algorithm Hash digest
SHA256 983bd7f562657c5cd24609c754cd7a8ce64b2418a648194c46a4ff2df6eb1b2a
MD5 7332119bd98aef1bd77c4c8cf0bb67fa
BLAKE2b-256 1ae2d650fb8b2b249ffe1e486c9f1a020a59c5bd68c95bd05dc3800bde64e3d7

See more details on using hashes here.

File details

Details for the file ai_microcore-0.7.13-py3-none-any.whl.

File metadata

File hashes

Hashes for ai_microcore-0.7.13-py3-none-any.whl
Algorithm Hash digest
SHA256 3f58cfb01cf0c23938bba1a2bae486af89f03f3aa5a7788101de022e1b5b9b0d
MD5 154a06855eedb4e2aa6442cbc45a0af6
BLAKE2b-256 c6acf1d7f267b76a6e86acf706aafd09f254bebb4507b6d3a15ac56812ad0401

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page