Skip to main content

AI Playground for trying out LLM Models, Embeddings, Vector Stores, Semantic Search, RAG, Azure OpenAI, LLaMa, Mistral

Project description

AI-Playground


AI Playground for trying out LLM Models, Embeddings, Vector Stores, Semantic Search, RAG, Azure OpenAI, LLaMa, Mistral

Installation

pip install -U ai-playground

Local Installation

Pre-requisites:

  • Python 3.10+ and pip
# Start virtual environment
source ./activate

# Install requirements
pip install -r requirements.txt

Running the full playground

  • Copy .env.example to .env and fill in the values

  • Run the following command to start the server

python ai_playground.py

Models

wget -c https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q8_0.gguf wget -c https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q8_0.gguf wget -c https://huggingface.co/TheBloke/Mistral-7B-OpenOrca-GGUF/resolve/main/mistral-7b-openorca.Q8_0.gguf

wget -c https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-GGUF/resolve/main/Wizard-Vicuna-7B-Uncensored.Q8_0.gguf

wget -c https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q8_0.gguf


Running Individual things

Use StarCoder

pip install transformers pip install torch torchvision pip install accelerate bitsandbytes pip install accelerate[torch]

Edit:

  • load_in_8bit=True

python starcoder.py

  • will download ~60 GB of model

Try with LLaMA.cpp

  • Extract LLaMA.cpp zip to bin/ directory
./bin/main.exe -m models/llama-2-7b-chat.Q8_0.gguf

Try with vLLM

pip install -U vllm

python -u -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --model mistralai/Mistral-7B-v0.1

Try with FastChat

pip install -U fastchat

python -m fastchat.serve.openai_api_server --host localhost --port 8000

Try with LeptonAI

pip install -U leptonai

Try with ollama

echo "FROM ./models/llama-2-13b-chat.Q5_K_M.gguf" > llama-2-13b-chat.Modelfile

ollama create llama2-13b-chat -f ./llama-2-13b-chat.Modelfile

ollama run llama2-13b-chat

ollama ps

Specs

RAM Required:

Model Size RAM Required
3B 8 GB
7B 16 GB
13B 32 GB

Chat UIs

  • OpenWebUI
  • ChatBotUI
  • OpenUI
  • AnythingLLM
  • LobeChat

Agents


Other Tools


Development Notes

pip install pyautogen

pip install openplayground
openplayground run

ollama run mistral

pip install -U jina

Ray Serve
pip install "ray[serve]"
https://github.com/ray-project/ray-llm

txtai

MLC AI - https://mlc.ai/package/
pip install --pre --force-reinstall mlc-ai-nightly mlc-chat-nightly -f https://mlc.ai/wheels
python -m mlc_chat.rest 

OpenLLM


https://github.com/FlowiseAI/Flowise


wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j

https://github.com/go-skynet/LocalAI
docker pull quay.io/go-skynet/local-ai:latest

nlpcloud

curl "https://api.nlpcloud.io/v1/<model_name>/entities" \
  -H "Authorization: Token <token>" \
  -H "Content-Type: application/json" \
  -X POST \
  -d '{"text":"John Doe has been working for Microsoft in Seattle since 1999."}'


https://github.com/microsoft/semantic-kernel
https://github.com/microsoft/guidance


https://skypilot.readthedocs.io/

Later:
https://github.com/Arize-ai/phoenix
https://github.com/explodinggradients/ragas
https://github.com/trypromptly/LLMStack


Q5_K_M



poetry export -f requirements.txt --output requirements.txt


lazypredict

mito

pip install langchain-serve

LangServe

pip install -U "langserve[all]"
pip install -U langchain-cli


langflow run


flowise

promptflow
pip install promptflow promptflow-tools


# DSPy
pip install dspy-ai



https://github.com/ShreyaR/guardrails
https://github.com/guardrails-ai/guardrails



guidance
https://github.com/1rgs/jsonformer

LangChain
https://github.com/jina-ai/langchain-serve

LangFlow / Flowise / LangSmith
ChainLit

promptflow


LMQI
https://github.com/eth-sri/lmql

https://github.com/zilliztech/GPTCache

https://github.com/argilla-io/argilla

https://github.com/vllm-project/vllm

https://github.com/TransformerOptimus/SuperAGI

accelerate
  - accelerate config
  - accelerate env
bitsandbytes
wand
https://github.com/huggingface/text-generation-inference


ctransformers

spacy
spacy-llm
gorilla-cli
https://github.com/langgenius/dify
gptcache

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ai_playground-0.1.1.tar.gz (4.8 kB view details)

Uploaded Source

Built Distribution

ai_playground-0.1.1-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file ai_playground-0.1.1.tar.gz.

File metadata

  • Download URL: ai_playground-0.1.1.tar.gz
  • Upload date:
  • Size: 4.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.0 CPython/3.10.11 Windows/10

File hashes

Hashes for ai_playground-0.1.1.tar.gz
Algorithm Hash digest
SHA256 282fa7c99f454801ca8c9dc9f5a9dcce9737bcb720d0a3fac88d2199b2ff3f98
MD5 5d70c6ef22c134e5995a968c1570e770
BLAKE2b-256 fe61dae6596cb7e05ec4580b365163cf84c13b57ba0b556abd8c4083a3f8df5a

See more details on using hashes here.

File details

Details for the file ai_playground-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: ai_playground-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 4.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.0 CPython/3.10.11 Windows/10

File hashes

Hashes for ai_playground-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6059e9e4e55746b6c744c734b26e2cfadd19a93b5f41b1ae837559a0396dea0f
MD5 99f15f875a77923ece351b33a04d76a3
BLAKE2b-256 74a3fd8eba44509923a538c6817820a9f08baf7dedba74ede8a21930c7688920

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page