Skip to main content

Yet another zoo of (Deep) Reinforcment Learning methods in Python using PyTorch

Project description

ai-traineree

Build Status DocStatus codecov Codacy Badge DOI

The intention is to have a zoo of Deep Reinforcment Learning methods and showcasing their application on some environments.

Read more in the doc: ReadTheDocs AI-Traineree.

Why another?

The main reason is the implemention philosophy. We strongly believe that agents should be emerged in the environment and not the other way round. Majority of the popular implementations pass environment instance to the agent as if the agent was the focus point. This might ease implementation of some algorithms but it isn't representative of the world; agents want to control the environment but that doesn't mean they can/should.

That, and using PyTorch instead of Tensorflow or JAX.

Quick start

To get started with training your RL agent you need three things: an agent, an environment and a runner. Let's say you want to train a DQN agent on OpenAI CartPole-v1:

from ai_traineree.agents.dqn import DQNAgent
from ai_traineree.runners.env_runner import EnvRunner
from ai_traineree.tasks import GymTask

task = GymTask('CartPole-v1')
agent = DQNAgent(task.obs_space, task.action_space)
env_runner = EnvRunner(task, agent)

scores = env_runner.run()

or execute one of provided examples

$ python -m examples.cart_dqn

That's it.

Installation

PyPi (recommended)

The quickest way to install package is through pip.

$ pip install ai-traineree

Git repository clone

As usual with Python, the expectation is to have own virtual environment and then pip install requirements. For example,

> python -m venv .venv
> git clone git@github.com:laszukdawid/ai-traineree.git
> source .venv/bin/activate
> python setup.py install

Current state

Playing gym

One way to improve learning speed is to simply show them how to play or, more researchy/creepy, provide a proper seed. This isn't a general rule, since some algorithms train better without any human interaction, but since you're on GitHub... that's unlikely your case. Currently there's a script interact.py which uses OpenAI Gym's play API to record moves and AI Traineree to store them in a buffer. Such buffers can be loaded by agents on initiation.

This is just a beginning and there will be more work on these interactions.

Requirement: Install pygame.

Agents

Short Progress Link Full name Doc
DQN Implemented DeepMind, Nature Deep Q-learning Network Doc
DDPG Implemented arXiv Deep Deterministic Policy Gradient Doc
D4PG Implemented arXiv Distributed Distributional Deterministic Policy Gradients Doc
TD3 Implemented arXiv Twine Delayed Deep Deterministic policy gradient Doc
PPO Implemented arXiv Proximal Policy Optimization Doc
SAC Implemented arXiv Soft Actor Critic Doc
TRPO arXiv Trust Region Policy Optimization
RAINBOW Implemented arXiv DQN with a few improvements Doc

Multi agents

We provide both Multi Agents agents entities and means to execute them against supported (below) environements. However, that doesn't mean one can be used without the other.

Short Progress Link Full name Doc
IQL Implemented Independent Q-Learners Doc
MADDPG Implemented arXiv Multi agent DDPG Doc

Loggers

Supports using Tensorboard (via PyTorch's SummaryWriter) and Neptune to display metrics. Wrappers are provided as TensorboardLogger and NeptuneLogger.

Note: In order to use Neptune one needs to install neptune-client (pip install neptune-client).

Environments

Name Progress Link
OpenAI Gym - Classic Done
OpenAI Gym - Atari Done
OpenAI Gym - MuJoCo Not interested.
PettingZoo Initial support Page / GitHub
Unity ML Somehow supported. Page
MAME Linux emulator Interested. Official page

Development

We are open to any contributions. If you want to contribute but don't know what then feel free to reach out (see Contact below). The best way to start is through updating documentation and adding tutorials. In addition there are many other things that we know of which need improvement but also plenty that we don't know of.

Setting up development environment requires installing dev and test extra packages. The dev extras are for mainly for linting and formatting, and the test is for running tests. We recommend using pip so to install everything requires for development run

$ pip install -e .[dev,test]

Once installed, please configure your IDE to use black as formatter, pycodestyle as linter, and isort for sorting imports. All these are included in the dev extra packages.

Contact

Should we focus on something specificallly? Let us know by opening a feature request GitHub issue or contacting through ai-traineree@dawid.lasz.uk.

Citing project

@misc{ai-traineree,
  author = {Laszuk, Dawid},
  title = {AI Traineree: Reinforcement learning toolset},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/laszukdawid/ai-traineree}},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ai-traineree-0.4.4.tar.gz (86.4 kB view details)

Uploaded Source

Built Distribution

ai_traineree-0.4.4-py3-none-any.whl (128.6 kB view details)

Uploaded Python 3

File details

Details for the file ai-traineree-0.4.4.tar.gz.

File metadata

  • Download URL: ai-traineree-0.4.4.tar.gz
  • Upload date:
  • Size: 86.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for ai-traineree-0.4.4.tar.gz
Algorithm Hash digest
SHA256 9fd7ebe1be70aa5ba7e4375cc4f9c5ddee4a54943e4d126d33a09d3b7fe7df0a
MD5 ed1e4d47d54bc9e01763c731cc7f6dc6
BLAKE2b-256 d8c689eb3c040c2c91887bd10c2c3797135f1dd0bb1769ab76463480eb7f8eb7

See more details on using hashes here.

File details

Details for the file ai_traineree-0.4.4-py3-none-any.whl.

File metadata

  • Download URL: ai_traineree-0.4.4-py3-none-any.whl
  • Upload date:
  • Size: 128.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for ai_traineree-0.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 b2c819dd4fb82bd350bbbcc0b623c06ba0d9a3c0a988d108e17ba10c0623d902
MD5 236cb8a94a6e2ff89f8a160ce65951b6
BLAKE2b-256 6e7ff93190987a54ac2379058b648f759d048bcdf4554db9b4b5af9eb7b8cafb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page