Skip to main content

A library for choreographing your machine learning research.

Project description




AI2 Tango replaces messy directories and spreadsheets full of file versions by organizing experiments into discrete steps that can be cached and reused throughout the lifetime of a research project.


CI PyPI Documentation Status License

Quick links

Installation

ai2-tango requires Python 3.7 or later.

Installing with pip

ai2-tango is available on PyPI. Just run

pip install ai2-tango

To install with a specific integration, such as torch for example, run

pip install 'ai2-tango[torch]'

To install with all integrations, run

pip install 'ai2-tango[all]'

Installing with conda

ai2-tango is available on conda-forge. You can install just the base package with

conda install tango -c conda-forge

You can pick and choose from the integrations with one of these:

conda install tango-datasets -c conda-forge
conda install tango-pytorch_lightning -c conda-forge
conda install tango-torch -c conda-forge
conda install tango-wandb -c conda-forge

You can also install everything:

conda install tango-all -c conda-forge

Even though ai2-tango itself is quite small, installing everything will pull in a lot of dependencies. Don't be surprised if this takes a while!

Installing from source

To install ai2-tango from source, first clone the repository:

git clone https://github.com/allenai/tango.git
cd tango

Then run

pip install -e '.[all]'

To install with only a specific integration, such as torch for example, run

pip install -e '.[torch]'

Or to install just the base tango library, you can run

pip install -e .

Checking your installation

Run

tango info

to check your installation.

Docker image

You can build a Docker image suitable for tango projects by using the official Dockerfile as a starting point for your own Dockerfile, or you can simply use one of our prebuilt images as a base image in your Dockerfile. For example:

# Start from a prebuilt tango base image.
# You can choose the right tag from the available options here:
# https://github.com/allenai/tango/pkgs/container/tango/versions
FROM ghcr.io/allenai/tango:cuda11.3

# Install your project's additional requirements.
COPY requirements.txt .
RUN /opt/conda/bin/pip install --no-cache-dir -r requirements.txt

# Install source code.
# This instruction copies EVERYTHING in the current directory (build context),
# which may not be what you want. Consider using a ".dockerignore" file to
# exclude files and directories that you don't want on the image.
COPY . .

Make sure to choose the right base image for your use case depending on the version of tango you're using and the CUDA version that your host machine supports. You can see a list of all available image tags on GitHub.

FAQ

Why is the library named Tango?

The motivation behind this library is that we can make research easier by composing it into well-defined steps. What happens when you choreograph a number of steps together? Well, you get a dance. And since our team's leader is part of a tango band, "AI2 Tango" was an obvious choice!

Team

ai2-tango is developed and maintained by the AllenNLP team, backed by the Allen Institute for Artificial Intelligence (AI2). AI2 is a non-profit institute with the mission to contribute to humanity through high-impact AI research and engineering. To learn more about who specifically contributed to this codebase, see our contributors page.

License

ai2-tango is licensed under Apache 2.0. A full copy of the license can be found on GitHub.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ai2-tango-0.12.0.tar.gz (178.8 kB view details)

Uploaded Source

Built Distribution

ai2_tango-0.12.0-py3-none-any.whl (232.2 kB view details)

Uploaded Python 3

File details

Details for the file ai2-tango-0.12.0.tar.gz.

File metadata

  • Download URL: ai2-tango-0.12.0.tar.gz
  • Upload date:
  • Size: 178.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.13

File hashes

Hashes for ai2-tango-0.12.0.tar.gz
Algorithm Hash digest
SHA256 8a1198b92539b3d4fccefecd662c24e2999a19645f5a3a0121511b915d94301b
MD5 89350e49a822468bfd1dfeac183c6c2a
BLAKE2b-256 8ade1c2e137607db7c8ca6b6ea6dcb428fcdfbfcee1b2dcd6d9b0ebce622f20a

See more details on using hashes here.

File details

Details for the file ai2_tango-0.12.0-py3-none-any.whl.

File metadata

  • Download URL: ai2_tango-0.12.0-py3-none-any.whl
  • Upload date:
  • Size: 232.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.13

File hashes

Hashes for ai2_tango-0.12.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8c11eec00f2a982be140ca0275697e2b07ff7fef5b7e5a6fba11857a47498257
MD5 addb9f4af08fa9208c053aeb813ffe01
BLAKE2b-256 66c5323847600d526401292ef42bde8a8add368a876674033435d85c816315ec

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page