This python package help to interact with Generative AI - Large Language Models. It interacts with AIaaS LLM , AIaaS embedding , AIaaS Audio set of APIs to cater the request.
Project description
AIaaS Falcon-Light
Description
AIaaS_Falcon_Light is Generative AI - Logical & logging framework support AIaaS Falcon library
:shield: Installation
Ensure you have the requests
and google-api-core
libraries installed:
pip install aiaas-falcon-light
if you want to install from source
git clone https://github.com/Praveengovianalytics/falcon_light && cd falcon_light
pip install -e .
Methods
Light
Class
-
__init__ (config)
Intialise the Falcon object with endpoint configs.
Parameter:- config: A object consisting parameter:
- api_key : API Key
- api_name: Name for endpoint
- api_endpoint: Type of endpoint ( can be azure, dev_quan, dev_full, prod)
- url: url of endpoint (eg: http://localhost:8443/)
- log_id: ID of log (Integer Number)
- use_pii: Activate Personal Identifier Information Limit Protection (Boolean)
- headers: header JSON for endpoint
- log_key: Auth Key to use the Application
- config: A object consisting parameter:
-
current_pii()
Check current Personal Identifier Information Protection activation status -
switch_pii()
Switch current Personal Identifier Information Protection activation status -
list_models()
List out models available -
initalise_pii()
Download and intialise PII Protection.
Note: This does not activate PII but initialise dependencies -
health()
Check health of current endpoint -
create_embedding(file_path)
Create embeddings by sending files to the API.
Parameter:- file_path: Path to file
-
generate_text(query="", context="", use_file=0, model="", chat_history=[], max_new_tokens: int = 200, temperature: float = 0, top_k: int = -1, frequency_penalty: int = 0, repetition_penalty: int = 1, presence_penalty: float = 0, fetch_k=100000, select_k=4, api_version='2023-05-15', guardrail={'jailbreak': False, 'moderation': False}, custom_guardrail=None)
Generate text using LLM endpoint. Note: Some parameter of the endpoint is endpoint-specific.
Parameter:- query: a string of your prompt
- use_file: Whether to take file to context in generation. Only applies to dev_full and dev_quan. Need to
create_embedding
before use. - model: a string on the model to use. You can use
list_models
to check for model available. - chat_history: an array of chat history between user and bot. Only applies to dev_full and dev_quan. (Beta)
- max_new_token: maximum new token to generate. Must be integer.
- temperature: Float that controls the randomness of the sampling. Lower values make the model more deterministic, while higher values make the model more random. Zero means greedy sampling.
- top_k: Integer that controls the number of top tokens to consider.
- frequency_penalty: Float that penalizes new tokens based on their frequency in the generated text so far.
- repetition_penalty: Float that penalizes new tokens based on whether they appear in the prompt and the generated text so far.
- presence_penalty: Float that penalizes new tokens based on whether they appear in the generated text so far
- fetch_k: Use for document retrival. Include how many element in searching. Only applies when
use_file
is 1 - select k: Use to select number of document for document retrieval. Only applies when
use_file
is 1 - api_version: Only applies for azure endpoint
- guardrail: Whether to use the default jailbreak guardrail and moderation guardrail
- custom_guardrail: Path to custom guardrail .yaml file. The format can be found in sample.yaml
-
evaluate_parameter(config)
Carry out grid search for parameter
Parameter:- config: A dict. The dict must contain model and query. Parameter to grid search must be a list.
- model: a string of model
- query: a string of query
- **other parameter (eg: "temperature":list(np.arange(0,2,0.5))
- config: A dict. The dict must contain model and query. Parameter to grid search must be a list.
-
decrypt_hash(encrypted_data)
Decret the configuration from experiment id. Parameter:- encrypted_data: a string of id
:fire: Quickstart
from aiaas_falcon import Falcon
model=Falcon(api_name="azure_1",protocol='https',host_name_port='example.com',api_key='API_KEY',api_endpoint='azure',log_key="KEY")
model.list_models()
model.generate_text_full(query="Hello, introduce yourself",model='gpt-35-turbo-0613-vanilla',api_version='2023-05-15')
Conclusion
AIaaS_Falcon_Light library simplifies interactions with the AIaaS Falcon, providing a straightforward way to perform various operations such as fact-checking and logging.
Authors
Google Colab
Badges
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file aiaas_falcon_light-0.2.5.tar.gz
.
File metadata
- Download URL: aiaas_falcon_light-0.2.5.tar.gz
- Upload date:
- Size: 10.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.13 Linux/6.2.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3e589d2b3b92ad3fcb82d21d5cd64369e8094bf69f5117770191256ad66ec13b |
|
MD5 | 1f79aa4a30f20674af8859e3267484ca |
|
BLAKE2b-256 | 15f3f6b959ff0dff3d7d63b48edf76d6d7976ca906bd9abd57a588574060e82f |
File details
Details for the file aiaas_falcon_light-0.2.5-py3-none-any.whl
.
File metadata
- Download URL: aiaas_falcon_light-0.2.5-py3-none-any.whl
- Upload date:
- Size: 10.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.13 Linux/6.2.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8214d2bd20af4cc1f193b985a00438766955db4a1a1fbfbafa448d938d939cb |
|
MD5 | a006020b0e25aa004c8082bd984f43e9 |
|
BLAKE2b-256 | 3b2e99037cbc68ef1373a2830bc610dc464f7d01e9f008cd8641296ffe2d40d5 |