Skip to main content

AiBox Natural Language Processing Toolkit.

Project description


AiBox Lab
aibox-nlp

Uma biblioteca de Processamento de Linguagem Natural para o Português Brasileiro.

FuncionalidadesQuick StartInstalação

Funcionalidades

  • 315+ características textuais para o Português Brasileiro;
    • CohMetrix-BR, NILCMetrix, Características Gramaticais, e outras!
  • Classificadores e Regressores clássicos
    • SVM, SVR, XGBoost, CatBoost, LGBM, RF, e outros!
  • Classificação e Regressão com Deep Learning
    • BERT, LSTM, BI-LSTM, CharCNN, entre outros!
  • Várias Estratégias de Vetorização
    • Vetorização baseada em Embeddings (nível de sentença, nível de palavra), baseada em TF-IDF, e outros!
  • Reprodutibilidade
    • Todos experimentos são reprodutíveis, basta indica a seed
  • AutoML: experimentação automática, basta indicar o conjunto de dados
    • Backend com optuna para otimização de parâmetros e motores de busca

Quick Start

A biblioteca se baseia em 3 entidades básicas:

  • Dataset
    • Um dataset representa um conjunto de pares de textos e targets (classes, ou valores), que devem ser utilizados para resolver um problema de classificação ou regressão.
  • Metric
    • Uma métrica permite as saídas de um dado estimador com os valores ground-truth do dataset.
    • Por exemplo, Precisão, Revocação e F1-score são métricas para avaliação.
    • Também existem outras métricas como o Kappa e Kappa Vizinho.
  • Pipeline
    • Representam um conjunto de 3 componentes:
      1. Estratégia de Vetorização
        • Converte um texto para sua representação numérica.
        • Alguns exemplos são extratores de características, extração de Embeddings (BERT, FastText, etc), ou TF-IDF.
      2. Estimador
        • Representam um algoritmo para classificação/regressão.
        • Alguns exemplos são SVM, SVR, Árvores de Decisão, Redes Neurais.
      3. Pós-processamento
        • Estratégia aplicada após a predição pelo estimador.
        • Pode ser utilizada para garantir os limites da saída, ou conversão de regressão para classificação.

Um Experimento permite comparar múltiplas Pipelines com as Métricas escolhidas em um dado Dataset. Para construir um experimento, é possível utilizar as classes presentes em aibox.nlp.experiments ou utilizar os padrões factory/builder presentes em aibox.nlp.factory. Um exemplo básico pode ser encontrado abaixo:

from aibox.nlp.factory.experiment import SimpleExperimentBuilder

# === Construindo um experimento para classificação no Essay-BR ===
# Por simplicidade, vamos instanciar um experimento
#   para comparar algumas abordagens para classificação
#   da competência 1 do dataset Essay-BR.
builder = SimpleExperimentBuilder()

# Inicialmente, vamos definir o dataset
builder.dataset('essayBR',
                extended=False,
                target_competence='C1')

# Vamos definir o tipo do problema
builder.classification()

# Vamos definir a seed randômica
builder.seed(42)

# Depois, vamos definir algumas métricas
#   que devem ser calculadas
builder.add_metric('precision', average='weighted')
builder.add_metric('recall', average='weighted')
builder.add_metric('f1', average='weighted')
builder.add_metric('kappa')
builder.add_metric('neighborKappa')

# Depois, vamos definir qual a métrica
#   que deve ser utilizar para escolher a
#   melhor pipeline
builder.best_criteria('precision', average='weighted')

# Agora, vamos adicionar algumas pipelines baseadas
#   em extração de característica
builder.add_feature_pipeline(
    features=['textualSimplicityBR'],
    estimators=['svm'],
    names=['svm+textual_simplicity'])

builder.add_feature_pipeline(
    features=['readabilityBR'],
    estimators=['svm'],
    names=['svm+readability'])

# Uma vez que tenhamos configurado o experimento,
#   podemos obter uma instância:
experiment = builder.build()

# === Executando o experimento ===
result = experiment.run()

# === Inspecionando os resultados ===
result.best_pipeline_name
# svm+textual_simplicity

result.best_metrics_history
# {
#   "svm+textual_simplicity": {
#     "Weighted Precision": 0.33119142,
#     "Weighted Recall": 0.5754923,
#     "Weighted F1-score": 0.42042914,
#     "Kappa": 0.0,
#     "Neighbor Kappa": 0.0
#   },
#   "svm+readability": {
#     "Weighted Precision": 0.33119142,
#     "Weighted Recall": 0.5754923,
#     "Weighted F1-score": 0.42042914,
#     "Kappa": 0.0,
#     "Neighbor Kappa": 0.0
#   }
# }

Para mais exemplos, acesse a documentação.

Instalação

Primeiro, realiza a instalação da biblioteca via pip ou através do git clone:

1. Instalando com o pip

# Configurar ambiente virtual
# ...

# Instalar através do pip
$ pip install aibox-nlp

# Adicionalmente, instalar dependências opcionais:

# BR contém características para PT-BR
$ pip install aibox-nlp[BR]

# trees contém estimadores baseados em árvore
$ pip install aibox-nlp[trees]

# embeddings contém vetorizadores baseados em modelos
$ pip install aibox-nlp[embeddings]

# Ou, instalar todas:
$ pip install aibox-nlp[all]

2. Instalando localmente

# Clonar repositório
$ git clone https://github.com/aiboxlab/nlp

# Acessar diretório
$ cd nlp

# Configurar ambiente virtual
# ...

# Instalar através do pip
$ pip install -e .

# Adicionalmente, instalar dependências
#   desejadas opcionais
$ pip install .[BR]
$ pip install .[trees]
$ pip install .[embeddings]

# Também é possível baixar todas as opcionais:
$ pip install .[all]

License

MIT


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aibox_nlp-0.0.2.tar.gz (75.7 kB view details)

Uploaded Source

Built Distribution

aibox_nlp-0.0.2-py3-none-any.whl (113.8 kB view details)

Uploaded Python 3

File details

Details for the file aibox_nlp-0.0.2.tar.gz.

File metadata

  • Download URL: aibox_nlp-0.0.2.tar.gz
  • Upload date:
  • Size: 75.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for aibox_nlp-0.0.2.tar.gz
Algorithm Hash digest
SHA256 726fdc5063062ac7d8c9c930d3904a6bb8061ce5b0d36f61883cbdacf167884e
MD5 3dada3c1e4e6ba6c79511d6a1a52c6a0
BLAKE2b-256 bce2230af82be82e937e5fa375363701de15c5e71688e74038c2a0d827c7c8e3

See more details on using hashes here.

File details

Details for the file aibox_nlp-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: aibox_nlp-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 113.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for aibox_nlp-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a4a398fc1ec721dcdf0ffd4ce60af900d8df9c8088f5a6fe14d0eccf0834331d
MD5 95927762cfc30520da37a099fdd7bc52
BLAKE2b-256 310139cbc10696ffdbe16801e8b6277860085df111f9083ca2db90c7f263d7b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page