Skip to main content

Spherical harmonics parametrization for 3D starlike shapes

Project description

AICS Spherical Harmonics Parametrization

Build Status Documentation

Spherical harmonics parametrization for 3D starlike shapes.

Parameterization of cell and nuclear shape

Installation:

Stable Release: pip install aicsshparam

Build from source to make customization:

git clone git@github.com:AllenCell/aics-shparam.git
cd aics-shparam
pip install -e .

How to use

Here we outline an example of how one could use spherical harmonics coefficients as shape descriptors on a synthetic dataset composed by 3 different shapes: spheres, cubes and octahedrons.

# Import required packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from aicsshparam import shtools, shparam
from skimage.morphology import ball, cube, octahedron
np.random.seed(42) # for reproducibility
# Function that returns binary images containing one of the three
# shapes: cubes, spheres octahedrons of random sizes.
def get_random_3d_shape():
    idx = np.random.choice([0, 1, 2], 1)[0]
    element = [ball, cube, octahedron][idx]
    label = ['ball', 'cube', 'octahedron'][idx]
    img = element(10 + int(10 * np.random.rand()))
    img = np.pad(img, ((1, 1), (1, 1), (1, 1)))
    img = img.reshape(1, *img.shape)
    # Rotate shapes to increase dataset variability.
    img = shtools.rotate_image_2d(
        image=img,
        angle=360 * np.random.rand()
    ).squeeze()
    return label, img

# Compute spherical harmonics coefficients of shape and store them
# in a pandas dataframe.
df_coeffs = []
for i in range(30):
    # Get a random shape
    label, img = get_random_3d_shape()
    # Parameterize with L=4, which corresponds to50 coefficients
    # in total
    (coeffs, _), _ = shparam.get_shcoeffs(image=img, lmax=4)
    coeffs.update({'label': label})
    df_coeffs.append(coeffs)
df_coeffs = pd.DataFrame(df_coeffs)

# Vizualize the resulting dataframe
with pd.option_context('display.max_rows', 5, 'display.max_columns', 5):
    display(df_coeffs)

Coefficients dataframe

# Let's use PCA to reduce the dimensionality of the coefficients
# dataframe from 51 down to 2.
pca = PCA(n_components=2)
trans = pca.fit_transform(df_coeffs.drop(columns=['label']))
df_trans = pd.DataFrame(trans)
df_trans.columns = ['PC1', 'PC2']
df_trans['label'] = df_coeffs.label

# Vizualize the resulting dataframe
with pd.option_context('display.max_rows', 5, 'display.max_columns', 5):
    display(df_trans)

PCA dataframe

# Scatter plot to show how similar shapes are grouped together.
fig, ax = plt.subplots(1,1, figsize=(3,3))
for label, df_label in df_trans.groupby('label'):
    ax.scatter(df_label.PC1, df_label.PC2, label=label, s=50)
plt.legend(loc='upper left', bbox_to_anchor=(1.05, 1))
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.show()

PC1 vs. PC2

Reference

For an example of how this package was used to analyse a dataset of over 200k single-cell images at the Allen Institute for Cell Science, please check out our paper in bioaRxiv.

Development

See CONTRIBUTING.md for information related to developing the code.

Questions?

If you have any questions, feel free to leave a comment in our Allen Cell forum: https://forum.allencell.org/.

Free software: Allen Institute Software License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aicsshparam-0.1.10.tar.gz (670.3 kB view details)

Uploaded Source

Built Distribution

aicsshparam-0.1.10-py2.py3-none-any.whl (14.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file aicsshparam-0.1.10.tar.gz.

File metadata

  • Download URL: aicsshparam-0.1.10.tar.gz
  • Upload date:
  • Size: 670.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for aicsshparam-0.1.10.tar.gz
Algorithm Hash digest
SHA256 89b3a9732dd87631e23e239262d96496b500b22b2f7ed4ba165dd22927129a3b
MD5 ebcd28d78aafe515fc5e6c6c97589fb5
BLAKE2b-256 cb172cb2cb7b636db144d025ba01933c007e2271e73f41c01e896d5b2170a8c7

See more details on using hashes here.

File details

Details for the file aicsshparam-0.1.10-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for aicsshparam-0.1.10-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 75f8c9f484cb667f78f1f049f28cf3189ab7f6e6edd241232c343b8a42462867
MD5 6c4e92c2bb9c221f2470db45197d7ed4
BLAKE2b-256 311b3b8d18855df79ea4f7f6512917b28e9f59f25ec6d0421491d04753bcb0d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page