Monitor system load of the server running the nvidia/cuda docker containers.
Project description
aidockermon
Monitor system load of the server running the nvidia/cuda docker containers.
Feature
- sysinfo: system static info
- sysload: system cpu/memory load
- gpu: nvidia gpu load
- disk: disk load
- containers: containers' load that based on the nvidia/cuda image
Prerequisite
Python >= 3
Installation
pip install aidockermon
Or use setuptools
python setup.py install
Usage
$ aidockermon -h
usage: aidockermon [-h] [-v] {query,create-esindex,delete-esindex} ...
optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit
command:
{query,create-esindex,delete-esindex}
query Query system info, log them via syslog protocol
create-esindex Create elasticsearch index
delete-esindex Delete elasticsearch index
$ aidockermon query -h
usage: aidockermon query [-h] [-l] [-r REPEAT] [-f FILTERS [FILTERS ...]] type
positional arguments:
type info type: sysinfo, sysload, gpu, disk, containers
optional arguments:
-h, --help show this help message and exit
-l, --stdout Print pretty json to console instead of send a log
-r REPEAT, --repeat REPEAT
n/i repeat n times every i seconds
-f FILTERS [FILTERS ...], --filters FILTERS [FILTERS ...]
Filter the disk paths for disk type; filter the
container names for containers type
For example:
Show sysinfo
$ aidockermon query -l sysinfo
{
"gpu": {
"gpu_num": 2,
"driver_version": "410.104",
"cuda_version": "10.0"
},
"mem_tot": 67405533184,
"kernel": "4.4.0-142-generic",
"cpu_num": 12,
"docker": {
"version": "18.09.3"
},
"system": "Linux"
}
Show sys load
$ aidockermon query -l sysload
{
"mem_free": 11866185728,
"mem_used": 8023793664,
"cpu_perc": 57.1,
"mem_perc": 12.8,
"mem_avail": 58803163136,
"mem_tot": 67405533184
}
Show gpu load
$ aidockermon query -l gpu
{
"mem_tot": 11177,
"gpu_temperature": 76.0,
"mem_free": 1047,
"mem_used": 10130,
"gpu_perc": 98.0,
"gpu_id": 0,
"mem_perc": 46.0
}
{
"mem_tot": 11178,
"gpu_temperature": 66.0,
"mem_free": 3737,
"mem_used": 7441,
"gpu_perc": 95.0,
"gpu_id": 1,
"mem_perc": 44.0
}
Show disk usage
$ aidockermon query disk -l -f /
{
"path": "/",
"device": "/dev/nvme0n1p3",
"total": 250702176256,
"used": 21078355968,
"free": 216865271808,
"percent": 8.9
}
$ aidockermon query disk -l -f / /disk
{
"path": "/",
"device": "/dev/nvme0n1p3",
"total": 250702176256,
"used": 21078355968,
"free": 216865271808,
"percent": 8.9
}
{
"path": "/disk",
"device": "/dev/sda1",
"total": 1968874311680,
"used": 1551374692352,
"free": 317462949888,
"percent": 83.0
}
Show containers' load
Note that the app_name
would be read from environment variable APP_NAME
, which
is a short description for this training program.
$ aidockermon query containers -l -f DianAI
{
"proc_name": "python3 test_run.py",
"app_name": "测试程序",
"pid": 13540,
"container": "DianAI",
"started_time": 1554698236,
"running_time": 9343,
"mem_used": 9757
}
{
"proc_name": "python train.py",
"app_name": "",
"pid": 15721,
"container": "DianAI",
"started_time": 1554698236,
"running_time": 19343,
"mem_used": 1497
}
{
"mem_limit": 67481047040,
"net_output": 47863240948,
"block_read": 1327175626752,
"net_input": 18802869033,
"mem_perc": 14.637655604461704,
"block_write": 132278439936,
"name": "DianAI",
"cpu_perc": 0.0,
"mem_used": 9877643264
}
Config
logging
debug: false
log:
version: 1
# This is the default level, which could be ignored.
# CRITICAL = 50
# FATAL = CRITICAL
# ERROR = 40
# WARNING = 30
# WARN = WARNING
# INFO = 20
# DEBUG = 10
# NOTSET = 0
#level: 20
disable_existing_loggers: false
formatters:
simple:
format: '%(levelname)s %(message)s'
monitor:
format: '%(message)s'
filters:
require_debug_true:
(): 'aidockermon.handlers.RequireDebugTrue'
handlers:
console:
level: DEBUG
class: logging.StreamHandler
formatter: simple
filters: [require_debug_true]
monitor:
level: INFO
class: rfc5424logging.handler.Rfc5424SysLogHandler
address: [127.0.0.1, 1514]
enterprise_id: 1
loggers:
runtime:
handlers: [console]
level: DEBUG
propagate: false
monitor:
handlers: [monitor, console]
level: INFO
propagate: false
This is the default config, which should be located at /etc/aidockermon/config.yml
.
You can modify the address
value to specify the logging target.
address: [127.0.0.1, 1514]
: UDP to 127.0.0.1:1514address: /var/log/aidockermon
: unix domain datagram socket
If you add an socktype
argument, you can specify whether to use UDP or TCP as transport protocol.
socktype: 1
: TCPsocktype: 2
: UDP
Enable TLS/SSL:
tls_enable: true
tls_verify: true
tls_ca_bundle: /path/to/ca-bundle.pem
Set debug
as true
, you can see message output in the console.
Cronjob
sudo cp etc/cron.d/aidockermon /etc/cron.d
sudo systemctl restart cron
syslog-ng
Using syslog-ng to collect logs and send them to elasticsearch for future use such as visualization with kibana.
cp etc/syslog-ng/syslog-ng.conf /etc/syslog-ng/
sudo systemctl restart syslog-ng
Sample config:
@version: 3.20
destination d_elastic {
elasticsearch2(
index("syslog-ng")
type("${.SDATA.meta.type}")
flush-limit("0")
cluster("es-syslog-ng")
cluster-url("http://localhost:9200")
client-mode("http")
client-lib-dir(/usr/share/elasticsearch/lib)
template("${MESSAGE}\n")
);
};
source s_python {
#unix-dgram("/var/log/aidockermon");
syslog(ip(127.0.0.1) port(1514) transport("udp") flags(no-parse));
};
log {
source (s_python);
parser { syslog-parser(flags(syslog-protocol)); };
destination (d_elastic);
};
Modify it to specify the elasticsearch server and the log source's port and protocol.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for aidockermon-0.10.3-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d04ef92a1b808d2aebb812b30a091647b21c51aa18004a580fe4326c21b28850 |
|
MD5 | 2c38e5b5979cfbdc48f08aff20550587 |
|
BLAKE2b-256 | a2414559f69c81d5de7ff4d689a73d16271be7c8098eb0c872d2d12521a767ad |