Skip to main content

Monitor system load of the server running the nvidia/cuda docker containers.

Project description

# aidockermon

Monitor system load of the server running the nvidia/cuda docker containers.

## Feature

- sysinfo: system static info
- sysload: system cpu/memory load
- gpu: nvidia gpu load
- disk: disk load
- containers: containers' load that based on the nvidia/cuda image

## Prerequisite

Python >= 3

## Installation

```bash
pip install aidockermon
```

Or use `setuptools`
```bash
python setup.py install
```

## Usage

```
$ aidockermon -h
usage: aidockermon [-h] [-v] {query,create-esindex,delete-esindex} ...

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit

command:
{query,create-esindex,delete-esindex}
query Query system info, log them via syslog protocol
create-esindex Create elasticsearch index
delete-esindex Delete elasticsearch index
```

```
$ aidockermon query -h
usage: aidockermon query [-h] [-l] [-r REPEAT] [-f FILTERS [FILTERS ...]] type

positional arguments:
type info type: sysinfo, sysload, gpu, disk, containers

optional arguments:
-h, --help show this help message and exit
-l, --stdout Print pretty json to console instead of send a log
-r REPEAT, --repeat REPEAT
n/i repeat n times every i seconds
-f FILTERS [FILTERS ...], --filters FILTERS [FILTERS ...]
Filter the disk paths for disk type; filter the
container names for containers type
```

**For example:**

Show sysinfo

```bash
$ aidockermon query -l sysinfo
{
"gpu": {
"gpu_num": 2,
"driver_version": "410.104",
"cuda_version": "10.0"
},
"mem_tot": 67405533184,
"kernel": "4.4.0-142-generic",
"hostname": "qiming3",
"cpu_num": 12,
"docker": {
"version": "18.09.3"
},
"system": "Linux"
}
```

Show sys load

```bash
$ aidockermon query -l sysload
{
"mem_free": 11866185728,
"mem_used": 8023793664,
"cpu_perc": 57.1,
"mem_perc": 12.8,
"mem_avail": 58803163136,
"mem_tot": 67405533184
}
```

Show gpu load

```bash
$ aidockermon query -l gpu
{
"gpu0": {
"gpu_perc": 79.0,
"gpu_temperature": 70.0,
"mem_free": 2009,
"mem_tot": 11178,
"mem_used": 9169,
"mem_perc": 52.0
},
"gpu1": {
"gpu_perc": 0.0,
"gpu_temperature": 35.0,
"mem_free": 11168,
"mem_tot": 11178,
"mem_used": 10,
"mem_perc": 0.0
}
}
```

Show disk usage

```bash
$ aidockermon query disk -l -f /
{
"disk0": {
"disk": "/",
"total": 454574346240,
"used": 91970564096,
"free": 339441332224,
"percent": 21.3
}
}
$ aidockermon query disk -l -f / /disk
{
"disk0": {
"disk": "/",
"total": 454574346240,
"used": 91970568192,
"free": 339441328128,
"percent": 21.3
},
"disk1": {
"disk": "/disk",
"total": 0,
"used": 0,
"free": 0,
"percent": 0
}
}
```

Show containers' load

```bash
$ aidockermon query containers -l -f DianAI
{
"DianAI": {
"mem_used": 7813517312,
"net_input": 115643168482,
"cpu_perc": 0.0,
"block_read": 16460615680,
"mem_perc": 11.591804029902235,
"block_write": 89476296704,
"apps": [
{
"mem_used": 9159,
"pid": 4692,
"started_time": 1554431776.79,
"proc_name": "python3 test_run.py",
"running_time": "2 12:8:38"
}
],
"name": "DianAI",
"net_output": 22105452100,
"mem_limit": 67405533184
}
}
```

## Config

### logging
```yaml
debug: false
log:
version: 1

# This is the default level, which could be ignored.
# CRITICAL = 50
# FATAL = CRITICAL
# ERROR = 40
# WARNING = 30
# WARN = WARNING
# INFO = 20
# DEBUG = 10
# NOTSET = 0
#level: 20
disable_existing_loggers: false
formatters:
simple:
format: '%(levelname)s %(message)s'
monitor:
format: '%(message)s'
filters:
require_debug_true:
(): 'aidockermon.handlers.RequireDebugTrue'
handlers:
console:
level: DEBUG
class: logging.StreamHandler
formatter: simple
filters: [require_debug_true]
monitor:
level: INFO
class: rfc5424logging.handler.Rfc5424SysLogHandler
address: [127.0.0.1, 1514]
enterprise_id: 1
loggers:
runtime:
handlers: [console]
level: DEBUG
propagate: false
monitor:
handlers: [monitor, console]
level: INFO
propagate: false

```

This is the default config, which should be located at `/etc/aidockermon/config.yml`.

You can modify the `address` value to specify the logging target.
- `address: [127.0.0.1, 1514]`: UDP to 127.0.0.1:1514
- `address: /var/log/aidockermon`: unix domain datagram socket

If you add an `socktype` argument, you can specify whether to use UDP or TCP as transport protocol.
- `socktype: 1`: TCP
- `socktype: 2`: UDP

Enable TLS/SSL:
```yaml
tls_enable: true
tls_verify: true
tls_ca_bundle: /path/to/ca-bundle.pem
```

Set `debug` as `true`, you can see message output in the console.

### Cronjob

```bash
sudo cp etc/cron.d/aidockermon /etc/cron.d
sudo systemctl restart cron
```

### syslog-ng

Using syslog-ng to collect logs and send them to elasticsearch
for future use such as visualization with kibana.

```bash
cp etc/syslog-ng/syslog-ng.conf /etc/syslog-ng/
sudo systemctl restart syslog-ng
```

Sample config:

```bash
@version: 3.20

destination d_elastic {
elasticsearch2(
index("syslog-ng")
type("${.SDATA.meta.type}")
flush-limit("0")
cluster("es-syslog-ng")
cluster-url("http://localhost:9200")
client-mode("http")
client-lib-dir(/usr/share/elasticsearch/lib)
template("${MESSAGE}\n")
);
};

source s_python {
#unix-dgram("/var/log/aidockermon");
syslog(ip(127.0.0.1) port(1514) transport("udp") flags(no-parse));
};

log {
source (s_python);
parser { syslog-parser(flags(syslog-protocol)); };
destination (d_elastic);
};
```
Modify it to specify the elasticsearch server and the log source's port and protocol.

## Contribute

Use the following command to generate `requirements.txt`, other wise there would be
one line `pkg-resources==0.0.0` which cause a failure to install dependencies.

```bash
pip freeze | grep -v "pkg-resources" > requirements.txt
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aidockermon-0.7.0.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

aidockermon-0.7.0-py2.py3-none-any.whl (14.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file aidockermon-0.7.0.tar.gz.

File metadata

  • Download URL: aidockermon-0.7.0.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5

File hashes

Hashes for aidockermon-0.7.0.tar.gz
Algorithm Hash digest
SHA256 11803b7be1fe17ac5f7f317b66d7b5561d2d99490e2ff80a1d7b11661c2754fd
MD5 ac7c7d042f1804d7abf5f0786352cffc
BLAKE2b-256 3943b759f3f39b4a53293e6b69215d43ec8638a4eb0e6363fb0e8bc6c16e238b

See more details on using hashes here.

Provenance

File details

Details for the file aidockermon-0.7.0-py2.py3-none-any.whl.

File metadata

  • Download URL: aidockermon-0.7.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 14.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5

File hashes

Hashes for aidockermon-0.7.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d9836ca8a257b00271f3e7df98b0b1796cb260f1e160d833f5bd83e8d60eddc1
MD5 6e38cc72381f66cd57ef0f0bcc9cd0c1
BLAKE2b-256 79651d4a1e7b91a563a02b6c8b8521a867cda17f6283f51fcd3af1eedc55fed2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page