Skip to main content

Python package for Augmented Interval List

Project description

Augmented Interval List

Build Status PyPI version Coffee

Augmented interval list (AIList) is a data structure for enumerating intersections between a query interval and an interval set. AILists have previously been shown to be faster than interval tree, NCList, and BEDTools.

This implementation is a Python wrapper of the one used in the original AIList library.

Additonal wrapper functions have been created which allow easy user interface.

All citations should reference to original paper.

For full usage and installation documentation

Install

If you dont already have numpy and scipy installed, it is best to download Anaconda, a python distribution that has them included.

    https://continuum.io/downloads

Dependencies can be installed by:

    pip install -r requirements.txt

PyPI install, presuming you have all its requirements installed:

    pip install ailist

Benchmark

Test numpy random integers:

# ailist version: 0.1.7
from ailist import AIList
# ncls version: 0.0.53
from ncls import NCLS
# numpy version: 1.18.4
import numpy as np
# pandas version: 1.0.3
import pandas as pd
# quicksect version: 0.2.2
import quicksect

# Set seed
np.random.seed(100)


# First values
starts1 = np.random.randint(0, 100000, 100000)
ends1 = starts1 + np.random.randint(1, 10000, 100000)
ids1 = np.arange(len(starts1))
values1 = np.ones(len(starts1))

# Second values
starts2 = np.random.randint(0, 100000, 100000)
ends2 = starts2 + np.random.randint(1, 10000, 100000)
ids2 = np.arange(len(starts2))
values2 = np.ones(len(starts2))
Library Function Time (µs)
ncls single overlap 1170
pandas single overlap 924
quicksect single overlap 550
ailist single overlap 73
Library Function Time (s) Max Memory (GB)
ncls bulk overlap 151 s >50
ailist bulk overlap 17.8 s ~9

Usage

from ailist import AIList
import numpy as np

i = AIList()
i.add(15, 20)
i.add(10, 30)
i.add(17, 19)
i.add(5, 20)
i.add(12, 15)
i.add(30, 40)

# Print intervals
i.display()
# (15-20) (10-30) (17-19) (5-20) (12-15) (30-40)

# Find overlapping intervals
o = i.intersect(6, 15)
o.display()
# (5-20) (10-30) (12-15)

# Find index of overlaps
i.intersect_index(6, 15)
# array([3, 1, 4])

# Now i has been constructed/sorted
i.display()
# (5-20) (10-30) (12-15) (15-20) (17-19) (30-40)

# Can be done manually as well at any time
i.construct()

# Iterate over intervals
for x in i:
   print(x)
# Interval(5-20, 3)
# Interval(10-30, 1)
# Interval(12-15, 4)
# Interval(15-20, 0)
# Interval(17-19, 2)
# Interval(30-40, 5)

# Interval comparisons
j = AIList()
j.add(5, 15)
j.add(50, 60)

# Subtract regions
s = i - j #also: i.subtract(j)
s.display()
# (15-20) (15-30) (15-20) (17-19) (30-40) 

# Common regions
i + j #also: i.common(j)
# AIList
#  range: (5-15)
#    (5-15, 3)
#    (10-15, 1)
#    (12-15, 4)

# AIList can also add to from arrays
starts = np.arange(10,1000,100)
ends = starts + 50
ids = starts
values = np.ones(10)
i.from_array(starts, ends, ids, values)
i.display()
# (5-20) (10-30) (12-15) (15-20) (17-19) (30-40) 
# (10-60) (110-160) (210-260) (310-360) (410-460) 
# (510-560) (610-660) (710-760) (810-860) (910-960)

# Merge overlapping intervals
m = i.merge(gap=10)
m.display()
# (5-60) (110-160) (210-260) (310-360) (410-460) 
# (510-560) (610-660) (710-760) (810-860) (910-960)

# Find array of coverage
c = i.coverage()
c.head()
# 5    1.0
# 6    1.0
# 7    1.0
# 8    1.0
# 9    1.0
# dtype: float64

# Calculate window protection score
w = i.wps(5)
w.head()
# 5   -1.0
# 6   -1.0
# 7    1.0
# 8   -1.0
# 9   -1.0
# dtype: float64

# Filter to interval lengths between 3 and 20
fi = i.filter(3,20)
fi.display()
# (5-20) (10-30) (15-20) (30-40)

# Query by array
i.intersect_from_array(starts, ends, ids)
# (array([ 10,  10,  10,  10,  10,  10,  10, 110, 210, 310, 410, 510, 610,
#         710, 810, 910]),
# array([  5,   2,   0,   4,  10,   1,   3, 110, 210, 310, 410, 510, 610,
#        710, 810, 910]))

Original paper

Jianglin Feng, Aakrosh Ratan, Nathan C Sheffield; Augmented Interval List: a novel data structure for efficient genomic interval search, Bioinformatics, btz407, https://doi.org/10.1093/bioinformatics/btz407

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ailist-2.1.3.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

ailist-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

File details

Details for the file ailist-2.1.3.tar.gz.

File metadata

  • Download URL: ailist-2.1.3.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.3 Darwin/23.2.0

File hashes

Hashes for ailist-2.1.3.tar.gz
Algorithm Hash digest
SHA256 313d0d326294ebdc6d9f8ff046fabc910aa161bbfed39ebc7deb70bf96bfc66f
MD5 8b092601f4d23ca7cabcc435b041c77d
BLAKE2b-256 326bd51299f5fdec5ddb714b7193456a4f0365ab37e9fa07122893f1d8476169

See more details on using hashes here.

File details

Details for the file ailist-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for ailist-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 e6f4c7d24759c3b0b962fc242beeef9cb962500dec28b78eb85d6f0a60eeeab9
MD5 7534ecfa67b691201262e6e56d4e28bd
BLAKE2b-256 547da1b88a19895c70081949c448e67213b850f932352605066eff6f748f909a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page