Skip to main content

A powerful web content fetcher and processor

Project description

Ailite

A lightweight Python interface for AI model interactions through Hugging Face's infrastructure.

Installation

pip install ailite

Usage

1. Initially SETUP Server Deployment with serve()

Launch your own API server:

from ailite import serve

# Start server on http://0.0.0.0:11435
serve()

1. Quick Start with ai()

The simplest way to get started:

from ailite import ai
response = ai("Explain quantum computing")
print(response)

2. Customization with ai()

from ailite import ai
response = ai(
    "Explain quantum computing",
    model="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
    conversation=False
)

3. Streaming Response with ai()

from ailite import ai
# With streaming
for chunk in ai(
    "Write a story about space",
    stream=True
):
    print(chunk, end="")

4. Client Usage with HUGPIClient

For more control over interactions:

from ailite import HUGPIClient

client = HUGPIClient(
    api_key="your_email@gmail.com_your_password",
    model="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
    system_prompt="You are a helpful assistant..."
)

# Generate text
response = client.messages.create(
    prompt="What is the theory of relativity?",
    conversation=True
)
print(response.content[0]["text"])

# Chat conversation
messages = [
    {"role": "user", "content": "Hi, how are you?"},
    {"role": "assistant", "content": "I'm doing well, how can I help?"},
    {"role": "user", "content": "Tell me about AI"}
]
response = client.messages.create(messages=messages)

5. Base Model with HUGPiLLM

For direct model interactions:

from ailite import HUGPiLLM

llm = HUGPiLLM(
    hf_email="your_email@gmail.com",
    hf_password="your_password",
    default_llm=3,  # Model index
    system_prompt="Custom system instructions here"
)

response = llm.generate("Explain machine learning")

Dependencies

fastapi>=0.68.0
pydantic>=1.8.0
uvicorn>=0.15.0
requests>=2.26.0

License

MIT License - see LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ailite-1.0.0.tar.gz (31.3 kB view details)

Uploaded Source

Built Distribution

ailite-1.0.0-py3-none-any.whl (39.0 kB view details)

Uploaded Python 3

File details

Details for the file ailite-1.0.0.tar.gz.

File metadata

  • Download URL: ailite-1.0.0.tar.gz
  • Upload date:
  • Size: 31.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for ailite-1.0.0.tar.gz
Algorithm Hash digest
SHA256 777e99cefd4364be08510c74b0a18df71e8a01eefcf02af1a0a2d648d256a428
MD5 ee79fe5394c6ee73984eedbd06d62f85
BLAKE2b-256 13ff13981592cb994cd203ba503162d399c7fcc02a956dc5df1b50212989212e

See more details on using hashes here.

File details

Details for the file ailite-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: ailite-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 39.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for ailite-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0d8d5179d8c590ecef6ca0ae2680fc08de56be382488eef274bec4ac4b549f58
MD5 f381cde8afbd75e7735f3f6c758c9414
BLAKE2b-256 39ea42839e138d03673b1e2650d49071b37f4874988ba33d17779dc692cd4415

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page