A powerful web content fetcher and processor
Project description
Ailite
A lightweight Python interface for AI model interactions through Hugging Face's infrastructure.
Installation
pip install ailite
Usage
1. Initially SETUP Server Deployment with serve()
Launch your own API server:
from ailite import serve
# Start server on http://0.0.0.0:11435
serve()
1. Quick Start with ai()
The simplest way to get started:
from ailite import ai
response = ai("Explain quantum computing")
print(response)
2. Customization with ai()
from ailite import ai
response = ai(
"Explain quantum computing",
model="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
conversation=False
)
3. Streaming Response with ai()
from ailite import ai
# With streaming
for chunk in ai(
"Write a story about space",
stream=True
):
print(chunk, end="")
4. Client Usage with HUGPIClient
For more control over interactions:
from ailite import HUGPIClient
client = HUGPIClient(
api_key="your_email@gmail.com_your_password",
model="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
system_prompt="You are a helpful assistant..."
)
# Generate text
response = client.messages.create(
prompt="What is the theory of relativity?",
conversation=True
)
print(response.content[0]["text"])
# Chat conversation
messages = [
{"role": "user", "content": "Hi, how are you?"},
{"role": "assistant", "content": "I'm doing well, how can I help?"},
{"role": "user", "content": "Tell me about AI"}
]
response = client.messages.create(messages=messages)
5. Base Model with HUGPiLLM
For direct model interactions:
from ailite import HUGPiLLM
llm = HUGPiLLM(
hf_email="your_email@gmail.com",
hf_password="your_password",
default_llm=3, # Model index
system_prompt="Custom system instructions here"
)
response = llm.generate("Explain machine learning")
Dependencies
fastapi>=0.68.0
pydantic>=1.8.0
uvicorn>=0.15.0
requests>=2.26.0
License
MIT License - see LICENSE file for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ailite-1.0.0.tar.gz
(31.3 kB
view details)
Built Distribution
ailite-1.0.0-py3-none-any.whl
(39.0 kB
view details)
File details
Details for the file ailite-1.0.0.tar.gz
.
File metadata
- Download URL: ailite-1.0.0.tar.gz
- Upload date:
- Size: 31.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 777e99cefd4364be08510c74b0a18df71e8a01eefcf02af1a0a2d648d256a428 |
|
MD5 | ee79fe5394c6ee73984eedbd06d62f85 |
|
BLAKE2b-256 | 13ff13981592cb994cd203ba503162d399c7fcc02a956dc5df1b50212989212e |
File details
Details for the file ailite-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: ailite-1.0.0-py3-none-any.whl
- Upload date:
- Size: 39.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0d8d5179d8c590ecef6ca0ae2680fc08de56be382488eef274bec4ac4b549f58 |
|
MD5 | f381cde8afbd75e7735f3f6c758c9414 |
|
BLAKE2b-256 | 39ea42839e138d03673b1e2650d49071b37f4874988ba33d17779dc692cd4415 |