Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs, enables a beautiful UI to compare them and an API to query them programmatically.

AboutFeaturesDemosExamplesQuick StartDocumentationRoadmapSlack CommunityTwitter

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues

Integrates seamlessly with your favorite tools



About Aim

Track and version ML runs Visualize runs via beautiful UI Query runs metadata via SDK

Aim is an open-source, self-hosted ML experiment tracking tool. It's good at tracking lots (1000s) of training runs and it allows you to compare them with a performant and beautiful UI.

You can use not only the great Aim UI but also its SDK to query your runs' metadata programmatically. That's especially useful for automations and additional analysis on a Jupyter Notebook.

Aim's mission is to democratize AI dev tools.

Why use Aim?

Compare 100s of runs in a few clicks - build models faster

  • Compare, group and aggregate 100s of metrics thanks to effective visualizations.
  • Analyze, learn correlations and patterns between hparams and metrics.
  • Easy pythonic search to query the runs you want to explore.

Deep dive into details of each run for easy debugging

  • Hyperparameters, metrics, images, distributions, audio, text - all available at hand on an intuitive UI to understand the performance of your model.
  • Easily track plots built via your favourite visualisation tools, like plotly and matplotlib.
  • Analyze system resource usage to effectively utilize computational resources.

Have all relevant information organised and accessible for easy governance

  • Centralized dashboard to holistically view all your runs, their hparams and results.
  • Use SDK to query/access all your runs and tracked metadata.
  • You own your data - Aim is open source and self hosted.

Demos

Machine translation lightweight-GAN
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

Quick Start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

4. Or query runs programmatically via SDK

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()

Integrations

Integrate PyTorch Lightning
from aim.pytorch_lightning import AimLogger

# ...
trainer = pl.Trainer(logger=AimLogger(experiment='experiment_name'))
# ...

See documentation here.

Integrate Hugging Face
from aim.hugging_face import AimCallback

# ...
aim_callback = AimCallback(repo='/path/to/logs/dir', experiment='mnli')
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset if training_args.do_train else None,
    eval_dataset=eval_dataset if training_args.do_eval else None,
    callbacks=[aim_callback],
    # ...
)
# ...

See documentation here.

Integrate Keras & tf.keras
import aim

# ...
model.fit(x_train, y_train, epochs=epochs, callbacks=[
    aim.keras.AimCallback(repo='/path/to/logs/dir', experiment='experiment_name')
    
    # Use aim.tensorflow.AimCallback in case of tf.keras
    aim.tensorflow.AimCallback(repo='/path/to/logs/dir', experiment='experiment_name')
])
# ...

See documentation here.

Integrate KerasTuner
from aim.keras_tuner import AimCallback

# ...
tuner.search(
    train_ds,
    validation_data=test_ds,
    callbacks=[AimCallback(tuner=tuner, repo='.', experiment='keras_tuner_test')],
)
# ...

See documentation here.

Integrate XGBoost
from aim.xgboost import AimCallback

# ...
aim_callback = AimCallback(repo='/path/to/logs/dir', experiment='experiment_name')
bst = xgb.train(param, xg_train, num_round, watchlist, callbacks=[aim_callback])
# ...

See documentation here.

Integrate CatBoost
from aim.catboost import AimLogger

# ...
model.fit(train_data, train_labels, log_cout=AimLogger(loss_function='Logloss'), logging_level="Info")
# ...

See documentation here.

Integrate fastai
from aim.fastai import AimCallback

# ...
learn = cnn_learner(dls, resnet18, pretrained=True,
                    loss_func=CrossEntropyLossFlat(),
                    metrics=accuracy, model_dir="/tmp/model/",
                    cbs=AimCallback(repo='.', experiment='fastai_test'))
# ...

See documentation here.

Integrate LightGBM
from aim.lightgbm import AimCallback

# ...
aim_callback = AimCallback(experiment='lgb_test')
aim_callback.experiment['hparams'] = params

gbm = lgb.train(params,
                lgb_train,
                num_boost_round=20,
                valid_sets=lgb_eval,
                callbacks=[aim_callback, lgb.early_stopping(stopping_rounds=5)])
# ...

See documentation here.

Integrate PyTorch Ignite
from aim.pytorch_ignite import AimLogger

# ...
aim_logger = AimLogger()

aim_logger.log_params({
    "model": model.__class__.__name__,
    "pytorch_version": str(torch.__version__),
    "ignite_version": str(ignite.__version__),
})

aim_logger.attach_output_handler(
    trainer,
    event_name=Events.ITERATION_COMPLETED,
    tag="train",
    output_transform=lambda loss: {'loss': loss}
)
# ...

See documentation here.

Comparisons to familiar tools

Tensorboard

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.

MLFlow

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.

Weights and Biases

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

Roadmap

Detailed Sprints

:sparkle: The Aim product roadmap

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months

Done

  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)

In Progress

  • Project overview page (Start: Sep 1 2022)
  • Remote tracking server scaling (Start: Sep 1 2022)
  • Integration with fast.ai (Start: Aug 22 2022)
  • Integration with MXNet (Start: Sep 20 2022)
  • Aim SDK low-level interface (Start: Aug 22 2022)

To Do

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Audio Explorer
    • Text Explorer
    • Distributions Explorer
  • Dashboards – customizable layouts with embedded explorers

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI interfaces
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences

Integrations

  • ML Frameworks:
    • Shortlist: MONAI, SpaCy, Raytune, MXNet, PaddlePaddle
  • Datasets versioning tools
    • Shortlist: HuggingFace Datasets
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
  • Others: Hydra, Google MLMD, Streamlit, ...

On hold

  • scikit-learn integration
  • Cloud storage support – store runs blob(e.g. images) data on the cloud (Start: Mar 21 2022)
  • Artifact storage – store files, model checkpoints, and beyond (Start: Mar 21 2022)

Community

If you have questions

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join our slack

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.14.3.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

aim-3.14.3-cp310-cp310-manylinux_2_24_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.14.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.14.3-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.14.3-cp310-cp310-macosx_10_14_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.14.3-cp39-cp39-manylinux_2_24_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.14.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.14.3-cp39-cp39-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.14.3-cp39-cp39-macosx_10_14_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-3.14.3-cp38-cp38-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.14.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.14.3-cp38-cp38-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.14.3-cp38-cp38-macosx_10_14_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.14.3-cp37-cp37m-manylinux_2_24_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.14.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.14.3-cp37-cp37m-macosx_10_14_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

aim-3.14.3-cp36-cp36m-manylinux_2_24_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.24+ x86-64

aim-3.14.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

aim-3.14.3-cp36-cp36m-macosx_10_14_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file aim-3.14.3.tar.gz.

File metadata

  • Download URL: aim-3.14.3.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.14.3.tar.gz
Algorithm Hash digest
SHA256 16c4157749bdb24e5b5d64454effdf8acab1fd831f6d6407c3e15bec649154a8
MD5 9bf6dd03d50386c625a79526d4dc0bd4
BLAKE2b-256 d9e5b56f378285350177d6df71b70495618474b7dab06fc6408f60e454c60bff

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 4fbbf2756378be854265bcd84a60b938ae070909968fe485cf1c9599ab8d2f9f
MD5 45e5faa338f7ab6fe95ee2fe79300b9c
BLAKE2b-256 7967a0ac547cdfaf43db29ec798fe4318f7f03e4c3965fb7563797a8823abda1

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6fa6ef6df59a8dd66de63717e5910f8dec1d4c0a24ecf5bcf79df525f58c738e
MD5 a92dbddd8a1650075b5d7b57cd00f739
BLAKE2b-256 8ab53edf06932043fc0d33a1aa1b56d53035cc4b7662242017b2bc205d2569fe

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e785b1cbd7f87e7f951f779221cb3d0604ecfc6683e9e4cf657bb557c0955fcd
MD5 bd41e9031f2a212c319c9824ce8e3e72
BLAKE2b-256 c99667a59b7c5ae4994aed7f8b2f6e42846bbb22ccacc9b7ddebd71f672ce916

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a90b0676221f5c2865a91950744cad04633fcd68350634c260ed34fea637e73e
MD5 00c6eabeda680d0757e14fc25762f90b
BLAKE2b-256 bce855ccdb0b02f7d7ed1dfe8717fc4fc75aa9d0f18e25b0fe3c53e27f8cb2de

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 06f3fc7d6872667dd3ef2b9cba17a01b7bee05b75ab8529a083030b5bd661624
MD5 6ed2c99bf6a2a8c4737323addaf1fa91
BLAKE2b-256 482511e54301c60ed2f50bd986dc20f81c5da89529f9df86bb347175ca958815

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c0b685d3e66fa8210070fa6ea8080a360cc819c21976f5b45b0dfa6b92157aa
MD5 c0912e38ea3be99b3aab4e56e3028d9c
BLAKE2b-256 0af27e9e270a1ce7a984e2ca4006e29773277a99fc5db9918a5d00a5eef42649

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 371f6ccb2eb008696016e7dadc647d49c5f3c6040ddb2f4cb28e78928b9ee7ef
MD5 8e184b6c4f69b6272dcfc78edc52b3cf
BLAKE2b-256 d8ea45549a86d4e4415214868409949cb71b037843295186c639e6d9fee3d04b

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5693c3e2311adb40dc6bafa3e2b437f644a85a318422fce29685939f9724a6c4
MD5 b2e6e7d98fee05af372a74f1088cec5c
BLAKE2b-256 b7520789986844e96020f473fe2c4f32d85b69f4f2483bf88d28cba0062ea4e4

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 453a56976474e841b4a50b70738cd1b58754d1b2d5292e4891e57e6212bb0ec0
MD5 7815d28887141c683c7a5010e0787e06
BLAKE2b-256 b943ee80b97d24f8392c9e779a518a288eb56175eca9373e778e5097c7fb85ea

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3819b247dd8969d3df0ed139d0b658ab9efcf3cd55ac923d33528d929a4da5d9
MD5 05ecb3049c2556241940181964bc3ca5
BLAKE2b-256 85bc212f459b59642e07c9ebe2369045ca7a77d46bd3e4e6bc32415cbdddad30

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ef5017e8cb6312da11858aabab00eb92056fe9c634b2dc0a4fbc6cad17aa70bc
MD5 208d13517546761d0ee70595b5e26988
BLAKE2b-256 eebd48c42b19c4ce25537b7dd93d6ef1c7456ef7e0951f76f7ff3ef6589721fe

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c564bdfeb0ac074dfcd0fbf300813007a85138ebe4c45366b4045628a6f7ab84
MD5 deadaca0b5926adfbd176660af4e38e2
BLAKE2b-256 b1f96c4a4b3a7d4a17c775f39cfe759ff072c59cff94b65c36777ad2f7a105e8

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 fc9255a8600a54cd63e2d644c5f51c1e22cb77c1b2f61520e423f24b845cb892
MD5 8b7943f685785183a76aebe1e4dc1b8f
BLAKE2b-256 9e26d9d4fb62bdb95fb5c706a61a4657d591f1790c25631e128c94d185b29496

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8357a2836ece713205d349e9eef4af772321504c5ee254625dbcfe81f211abde
MD5 5609806d2d812e361405a12f15268792
BLAKE2b-256 839a0610aa9742bd492c9727449ef4fca35c80c972ccda5eefb6dfb6d30b123c

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 27a9ab74075a884ea4e551f34b881042936b46f8037db18bcec268f60d7c658a
MD5 372e6eff6f144de608de0973b091be12
BLAKE2b-256 0ea0a476275655001496023522695618db7235cecf8b9dcb6e94e2ec9d8d4398

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp36-cp36m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp36-cp36m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 b3a7ad3c4dbaaefa800d44dd2eeedbc09c5be2486cf5c08b7a45f949fa41ab0d
MD5 cf37295f78f8a87a4ed900ea004abaf1
BLAKE2b-256 68dcb3d6c1deb31031e516b1202d8538cd12f73106ea171556bc550c4060e6cd

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.14.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ad5e50dad16d2a00df587d4c2fe9a2c64794662ed1a21b1e047f727c0fbf97c
MD5 7b4aeef05c9a3532fd871a250984f508
BLAKE2b-256 3c084f769a354c79fc5a0d699cdc0f409ee19bed7da14f8661a036a883552516

See more details on using hashes here.

File details

Details for the file aim-3.14.3-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: aim-3.14.3-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.13

File hashes

Hashes for aim-3.14.3-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 08cd66d4736aba8c8c01ecd1b2b781338716aecfa84f7c6967f160902b785327
MD5 a6b9d5ab6572f3b48f1b4671cadb3a92
BLAKE2b-256 2cfa316f56a5e7baf5bb8989f2fdee563297aa79d4b200c29d0d224e7949b6a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page