Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically.

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosEcosystemQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

Aim's mission is to democratize AI dev tools 🎯


Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress
  • Logging and configurable notifications
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view
  • Runs grouping with tags and experiments

🎬 Demos

Check out live Aim demos NOW to see it in action.

Machine translation experiments lightweight-GAN experiments
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experiments Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflow Aim-spaCy
aimlflow Aim-spaCy
Exploring MLflow experiments with a powerful UI an Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

Migrate from other tools

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

Integrate Aim into an existing project

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

Query runs programmatically via SDK

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
Set up a centralized tracking server

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

Deploy Aim on kubernetes

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

TensorBoard vs Aim

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.
MLflow vs Aim

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.
Weights and Biases vs Aim

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

🛣️ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

  • Aim SDK low-level interface
  • Dashboards – customizable layouts with embedded explorers
  • Ergonomic UI kit
  • Text Explorer
Next-up

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Distributions Explorer

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI commands
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences
  • Cloud storage support – store runs blob(e.g. images) data on the cloud
  • Artifact storage – store files, model checkpoints, and beyond

Integrations

  • ML Frameworks:
    • Shortlist: scikit-learn
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
Done
  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)
  • Integration with fast.ai (Start: Aug 22 2022, Shipped: Oct 6 2022)
  • Integration with MXNet (Start: Sep 20 2022, Shipped: Oct 6 2022)
  • Project overview page (Start: Sep 1 2022, Shipped: Oct 6 2022)
  • Remote tracking server scaling (Start: Sep 11 2022, Shipped: Nov 26 2022)
  • Integration with PaddlePaddle (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Integration with Optuna (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Audios Explorer (Start: Oct 30 2022, Shipped: Nov 26 2022)
  • Experiment page (Start: Nov 9 2022, Shipped: Nov 26 2022)
  • HuggingFace datasets (Start: Dec 29 2022, Feb 3 2023)

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.25.0.dev20240816.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

aim-3.25.0.dev20240816-cp312-cp312-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240816-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aim-3.25.0.dev20240816-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aim-3.25.0.dev20240816-cp311-cp311-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240816-cp311-cp311-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240816-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240816-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-3.25.0.dev20240816-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-3.25.0.dev20240816-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240816-cp310-cp310-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240816-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240816-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.25.0.dev20240816-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.25.0.dev20240816-cp39-cp39-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240816-cp39-cp39-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240816-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240816-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.25.0.dev20240816-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-3.25.0.dev20240816-cp38-cp38-manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240816-cp38-cp38-manylinux_2_24_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240816-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240816-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.25.0.dev20240816-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.25.0.dev20240816-cp37-cp37m-manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240816-cp37-cp37m-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240816-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240816-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-3.25.0.dev20240816.tar.gz.

File metadata

  • Download URL: aim-3.25.0.dev20240816.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.25.0.dev20240816.tar.gz
Algorithm Hash digest
SHA256 5ff4b6f72e3e1109f7bd2c90510016e6a0267244c3dc87336895d9d71d9e12d2
MD5 4fc52f8155a6b70a43c51fea44106df3
BLAKE2b-256 5a9eefc4b26056f572487422ca7b52c36b44238815dbdaf644918fc98671afce

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5df8b107e92c4bd5803ea398155dd7304dede50a6144517a3d13b1baa2f59f57
MD5 3e73bdac59b9dfee4ddd18457a526098
BLAKE2b-256 6f5ba57a6e42045ad8e46329ec41339cb57cee5d51aee31411fcb94bcd846a46

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1cd342dd58fd0f0debd0be76296c83610343a5f3e4a747c81f8f0eb6bee1f256
MD5 9ef66e997727b78add1853ee90eb6c50
BLAKE2b-256 ba50c287c60e5c4965a5364db7fcc0c9d9b464b506c8dba5912bcab7eea84f02

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f65781f65b9670c817a54f22a55e0ffc1eb950da2f1fc37ef42076637a81c0ff
MD5 b87d2b99281fbd8d2b77cf687b9d0af9
BLAKE2b-256 666915dbeb65814d74f3ecb09506a08f15da365660320ac5df9bcaf93ce643ca

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2bdf1c793b0264741013b91879dc30c04d444585625ff908ba4fa35f04d36b5f
MD5 b06722e88cb277fb9441b551257d0bea
BLAKE2b-256 dbc01ef15ee7157c4f921f97dec73c10f455ff889ce117de5ddcae72a675aebd

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 4e4b2948e5febc9241d866f02597652f03f798adef7c07f1340bedf23bd3da4e
MD5 7886ce0373ce748357e98ffa8aae90fd
BLAKE2b-256 85f7b14956bfb825f4801d5154ca5b0f14f54a4b2efc0d923b71211385b9b17f

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6840a0ef903a030d9c1f0a5c46cd8296ac289b1adcda2504bd3e2c086ee0cbda
MD5 99d2fb40a7906660fd1cd47879ed7562
BLAKE2b-256 6ef237ea5dce5f54d658e1d65ebf4bec05577345e32c97a749e04acf140af9f7

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 46a7f782c9abb22a0519ac72ab2316fef4164c1b3abe5a4ed793c241f31130d0
MD5 65f1e659e63a4c2bb3a8cc1ce1ef0f89
BLAKE2b-256 b64a286b463a13db0bb0f359d252c53ad24fe792932fedfe15be154decd1fa4c

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8e119fdc1fe4fd16167d33cddaa6ca7b797d6b459cd83137ce2b991d2d2fee65
MD5 3f1f83362953a672f70a40f1ccd2e646
BLAKE2b-256 05a52e6707bbaae2b00489600acc300006bc282c21ca9b0e76605bf8cb8fe42a

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 be0f35e9f1467f59bda8a1828c93c56a049215c45fee2f0b9f85897e14ba11db
MD5 21a1bd76a39606050d8e5d3b4c7586e1
BLAKE2b-256 4ad251db8c661b505df64b5eaf53dff9b66a287ab5309565449c21e6cf258445

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 31b8014f198a70b18a19f46adbe7e4106d889e4b5960e4934bebad789e8d3132
MD5 5935f0bb49823b7c8bbb6c5636504de2
BLAKE2b-256 f4c31d74cb6473fade3906b5d4ed07cc89af7665729f7a13dd798ae3d2cf08d1

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f95e1a07cbc369a23570bd911a2877c8afddd70cdfda9a1c636a1a999bbae97
MD5 51f27a6a382851474a99119a9687c2de
BLAKE2b-256 f1dd3006aefd8ef7c20c4f51e0bf4ca73aeaeee7bc3db204e3ec2ea62571a2f9

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 654a0f174f59a663d68823855879cb374fd44b559760f5f46d6adab353775602
MD5 4373d7e293177b3435eb46ae158dfa38
BLAKE2b-256 c6978eb88dfd0d65048a9da5470293f24cb5b71d2a409123a6f34ac9c28593ad

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f06d959d011fd66125655c4d62cab4665bb414cfb51d9d18fa65d73b8205f312
MD5 efaf085da9ab203ce371b1fb89cbfeb2
BLAKE2b-256 84cfa136ef092c3970816adf70acb595ab46bc27ed9bb43d263226a944e91b5a

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5685a5ffb9a60d00c4640d79ca126d37da70c26217f9347e4d6a538706b92f9c
MD5 cc68478054d92e76dbbe8f66d547bb3a
BLAKE2b-256 7f5326c3d592ec57cf78867f8cb33b72a7b6e6ab6ba4d5044543c62b51e9e74e

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 3f1bad3921e29768c35140beba693cdc2ecb1c0f2465ea34fc10ed5577126540
MD5 8254e92a1795630b858d804c07f12f7c
BLAKE2b-256 a2b5f9c029d64879e237ec4a0ca025ab833876aaafa16f148943a68cc4612d5a

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 708703652ccb508e49fca27e3e86995913970de3be3ae2d8b3559b90c4f8dc21
MD5 cbeb186ed2a8f014927ffcc3103cf4c1
BLAKE2b-256 84aa814a2b2a9fa9f9cd06699b852c362b005b78c3ef9930aefc0ed31e562eb3

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0736b6d762550128ef6b1347342913d3a33bfde0db00280d8231ddd2cf8b31f2
MD5 78c113c2c30ade003662aba8ed9fa756
BLAKE2b-256 c8cb762f5c5b2af569bb262a18fce22829609d5e07f6b3ebb5585c4d6fb91b11

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2cfe991c67f6981aaa830ab5c6a4f8fc0e45a47e0b959d8fa3fe22d259aa8c6f
MD5 9c9c3af86a62014144af769a4f47866a
BLAKE2b-256 fd483e1814ea1bf41315980e7eb4e01934dc1a2664aa614b65bbe90813079b2b

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a3639da1225bcb8197d5c067cc485f1223f6a848af657fd41c5e0a1af5fbac7c
MD5 3995c5c184111d92634b8f276746bae5
BLAKE2b-256 81fb2766dbef1add6d947b8f39997e07aa0c2095c5b7c238d8968dd3bb4c9a35

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 ff35a551b314ea43b13db88afa412f3f8f8ed77442226e81fd16900c853d99a1
MD5 1c77026fe2c1bf5782b834195d83e67d
BLAKE2b-256 108e3531dcd95d30178fc83984baf9d89d03d8ece2f80b559285cfccf62a93ba

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b48489a7423e4f1b2e6115d4c148a0517e33fc109e454feac18689fadce3731
MD5 51c8b32fb4abeb419b9bb65295f8df12
BLAKE2b-256 d51aced7450775e7e198b74042f1a51aaf21f754055383340775afd31b8c89b5

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7325537bdb4fe370889af6a7304459d12493a6092f87a5043c05e6927ea1b702
MD5 d96fec69ac724503c5efc57a65ad79ac
BLAKE2b-256 339c8b12a72573d7c49dffb4fc86f4f675a50867e0c336a72baef08e1598daa8

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1203fafb3320a2203a587b1497a6e408095d1fda7bc2dede3b784f12d57089f7
MD5 0a26229bd676cacb38a334e6955d9378
BLAKE2b-256 889ec42f4b6ea26a208569257f8d23e757a39bd7e57496a0a0c41ec25cd730a6

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0706a5b143daea27a079d51b6c3caf36d566780018b9ce054803775cdc52d685
MD5 56436e543b9012cf0342213bf1e52c3e
BLAKE2b-256 bafc64a86fa31820e36449e746ae196a9b495129ab7aeebd6e8c419434904948

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 ef1577c8bf6d2424503bd86d2bb7400704a71c095f98ac35b7d994976c30339b
MD5 f2d0c8725bc671f6a9f5a0324298cf0e
BLAKE2b-256 8e3c0c9d4289ad22e237977c0de0b1898c1831354789a23415095b9d116df9b0

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95c999f9fce7259292db3260e9c7e7c67e75d4ad10b4ae3eca185b59eed070e4
MD5 7abf914155c4c6aec44e5bc6b353079f
BLAKE2b-256 f346d5c528edbb03e3de0010cc462fcb2e4c83a0c3e74790fd8fb7c47a495775

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240816-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240816-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b1a43549f0deae308b72b83d09c1f3b6bb2056f421afc404eb7c98bd5b22a6ab
MD5 a17d2b5684b40c459341e145b7a108c0
BLAKE2b-256 cce75522b24a3d34ef1a2b84054212680b2eb702e357483123ea7d186f05c5f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page