Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically.

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosEcosystemQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

Aim's mission is to democratize AI dev tools 🎯


Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress
  • Logging and configurable notifications
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view
  • Runs grouping with tags and experiments

🎬 Demos

Check out live Aim demos NOW to see it in action.

Machine translation experiments lightweight-GAN experiments
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experiments Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflow Aim-spaCy
aimlflow Aim-spaCy
Exploring MLflow experiments with a powerful UI an Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

Migrate from other tools

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

Integrate Aim into an existing project

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

Query runs programmatically via SDK

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
Set up a centralized tracking server

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

Deploy Aim on kubernetes

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

TensorBoard vs Aim

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.
MLflow vs Aim

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.
Weights and Biases vs Aim

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

🛣️ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

  • Aim SDK low-level interface
  • Dashboards – customizable layouts with embedded explorers
  • Ergonomic UI kit
  • Text Explorer
Next-up

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Distributions Explorer

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI commands
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences
  • Cloud storage support – store runs blob(e.g. images) data on the cloud
  • Artifact storage – store files, model checkpoints, and beyond

Integrations

  • ML Frameworks:
    • Shortlist: scikit-learn
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
Done
  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)
  • Integration with fast.ai (Start: Aug 22 2022, Shipped: Oct 6 2022)
  • Integration with MXNet (Start: Sep 20 2022, Shipped: Oct 6 2022)
  • Project overview page (Start: Sep 1 2022, Shipped: Oct 6 2022)
  • Remote tracking server scaling (Start: Sep 11 2022, Shipped: Nov 26 2022)
  • Integration with PaddlePaddle (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Integration with Optuna (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Audios Explorer (Start: Oct 30 2022, Shipped: Nov 26 2022)
  • Experiment page (Start: Nov 9 2022, Shipped: Nov 26 2022)
  • HuggingFace datasets (Start: Dec 29 2022, Feb 3 2023)

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.25.0.dev20240819.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

aim-3.25.0.dev20240819-cp312-cp312-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240819-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aim-3.25.0.dev20240819-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aim-3.25.0.dev20240819-cp311-cp311-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240819-cp311-cp311-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240819-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240819-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-3.25.0.dev20240819-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-3.25.0.dev20240819-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240819-cp310-cp310-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240819-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240819-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.25.0.dev20240819-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.25.0.dev20240819-cp39-cp39-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240819-cp39-cp39-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240819-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240819-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.25.0.dev20240819-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-3.25.0.dev20240819-cp38-cp38-manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240819-cp38-cp38-manylinux_2_24_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240819-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240819-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.25.0.dev20240819-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.25.0.dev20240819-cp37-cp37m-manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240819-cp37-cp37m-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240819-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240819-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-3.25.0.dev20240819.tar.gz.

File metadata

  • Download URL: aim-3.25.0.dev20240819.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.25.0.dev20240819.tar.gz
Algorithm Hash digest
SHA256 3672e04a4c1e6fec3a16f588209eb299535ea0cf691ebe108c96714e971303ec
MD5 2d711c8b0d00bfb0acc40e7a5a571507
BLAKE2b-256 461d821bedfcd579f2998476392bf2c7fc75dd0adea4d613d7ba6cb81aae3832

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e587f876d800c301e0de5be3b5011218adbaefbd5ca9231c31e85736db2df637
MD5 52e75a6bb9f27337bf81f64bd5a4dc5a
BLAKE2b-256 38034d112f960f3bceb9a2a5ccf093cd904c5936f1f10e7c86e5487bf21a5932

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dff9810ef7b7ac9a5d33e85a82f966c74477d91ade8c1cde0f26bd55cac9fb50
MD5 617adedea3d2df5efd8feeeaf413682a
BLAKE2b-256 3993ebd272dbf6cd37d15b3f60723eac7713841c25643bb3c4aeeea0af4b974f

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8338bdc12c1bd777512a966d98a6066f838415f09ab1b04e44c2d64b195af708
MD5 51b6106fbab5ff1b07387216e96ad213
BLAKE2b-256 b42c7cbaa4dab7073bf3a0e2bbb92a6f567a18e37d3cfc68e01ea7cf278300e4

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1cf11890fb0f89d7415e037555552241ea4b6ebb0f2c4bbd8a980468bd018d9e
MD5 3f88d7e5f08cbb87f1c36a3314b83b32
BLAKE2b-256 36f9b2d0e25b59b9a4a83d1a36524f66367e20db2ff786bb18076946f7883954

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 d63ec473974c68926fbdd083eb7067b43d4f9068fc9724a349fcc1ee2ff28338
MD5 274278d38f40d853e2725aa8b707b54f
BLAKE2b-256 7e49a37597c84aa2f1d1724a9a40489691fcf5a594eb1e9c3951807f83e8240a

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3bc0420e19e9fdb5de2dbe65d2e3a5e62a2afb463a208f57d393dc8321a4fc5
MD5 3549abbf56b9c6cd16fd6bedcd740fee
BLAKE2b-256 70bc789f5a1e792ea1c910ee2d90d44a80c67c5b980b913e0c13071d251dc7a5

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c29fc32098883e52a3fbcc79953e8ddab4595959a1e7d76b340db2934395fa89
MD5 51b10b9b7ac34cd14c9948757e2c5ff0
BLAKE2b-256 8a7060c0f78e11b5300b0e1164d29ad20e13c314a921f469e70fe31ddb5985a2

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4f3a77a65e87635a4e5bce5d810bce8ef067f2d778eeab70bb97c747d00efc9c
MD5 3a241157d4c41089ee91bef3151dd5cd
BLAKE2b-256 7249c7932dd0e737dfd089cfc64d8dd8fe40e215e3da841a2e6ddfc8cdba325f

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 17652fa16d43fec39ca53d8cdc51c596c1461a7323eed51cc5d1a3c7d57f191e
MD5 877e7a1f78a813dd9fea800a7c8502cd
BLAKE2b-256 e6da038c3d83645113b3af00a02458b57d1313d9ebeff4f275714d9fb6de2ffd

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 b32a9d49191d22f08dc58fe06490381328056e646f26e9e5a9b6745ee74c93eb
MD5 1648c4f8cfdf44f8312c6e1a7d41ea12
BLAKE2b-256 514e4e2a4ebf96977c3641cb60379863ad9fbea4f57a6d1c86806fcbef8e3fad

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 067b3f4029495a04fac42ee1dd3efa1210562850b879e43a127394c862e6c490
MD5 d315930bbed1ad320333a13dbf1d6d16
BLAKE2b-256 b0186c64540282b6fddfdba35f2431553ba16323e627a4e030c68da25d2a04a4

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af1e0f3be2dad135eb534780670dd775064171d161cf0ca8c4545ae8ead982fb
MD5 1da0d7ec8618759f127a37245b483908
BLAKE2b-256 d4e6ea8b0cf9e1345ae88abb610c76a02403bb29554f057a2ece06e550fcbcb7

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4e705014dcde379497e1ec497f46e58918504e81cdae0632458d642ba2630931
MD5 1d08fa6f350f2cf4b54428628d34cc0a
BLAKE2b-256 65704ef181518a3aa77c8c38842942f7f76f4425c736be0cd18a991f4e3be34a

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7348305b6c93ba6e1423cd62b0c83bd517ca33b55b4a455448faf2ecd278d63a
MD5 6343f2f637ad02d8f6f2aed4e7fc41c8
BLAKE2b-256 1fb884cac9e8567201de75db8736e2345194bf6082a7bb278a85f9bef194c8d9

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 5a40f6df21cc5b0fe69652265f7145b6da16b2bd5a2bf2b4ce557d0367026a6d
MD5 2e2f61f3418ad24e4723c9fb005f8880
BLAKE2b-256 81970a14355290cd7624dfe97cf4e82032d04a4d8657c779249a149b81f11475

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d332c26568c30f62bb110b3b2e29d453c7d7c7fcfb337f4b8ba0a8a5ed6656e
MD5 b35489fa94251cda62afd22e3908095e
BLAKE2b-256 4743b93599574181e122f776a9993dd80e1dd0bfc93d8b17490f4099966b62fc

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9dccf624d2f08f178ef0d1f531aae3ac1e41d87f98d1ec99ddbec934ff74593c
MD5 36caed9778d2053eeff810033375d9f2
BLAKE2b-256 949f237a6ef11b00bd5d7ccd1db9873f21958f990681b9587f512a69330fbea3

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5f6ec899054ce3b9225c4f1c4f751cc4c6e1f3d814994b8302fa7341865b6de5
MD5 06bf9dfddd033ed1d6edbbb8195b4a98
BLAKE2b-256 d6fc9b8a5ae1ffbb1b89eedd3d318cb5f3bee35bdef3490cd2ecd1c0919cd1ee

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ac7c5d67272b3d791c2d8ededdf98ddb01a9caf60e5a79dc2110d143fbfeb39b
MD5 9efc34710ab88e8fcee105b3d8ba070c
BLAKE2b-256 e64a7b9014a869e7bccc151a68ffaf771923d79408f2d210d341c7a289720b05

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 0e4324a30adf443eceb873829ffcef3ccde3d91f0cd4044f1647d3c2fd6b73ff
MD5 8c0a8c61760e556151642cb851576458
BLAKE2b-256 fbd88736261db8c1a7fb7fa7c3e15c8089a0d8de7110f651b6e4f670c9835b3d

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a06fe1e17f656599c5995f1558287543200ca93cf82c66ab49090cd591007335
MD5 3ff581a035337bf7a12b611583f3a9ac
BLAKE2b-256 7f30cafe5b4ef7491973eb4832ae50072161f156d19595a080bccde450ce49d0

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ece09434e71cec19939dc90cb51bfc19e9f859b2b61cf43bb8058d250fd6b31e
MD5 74fbcb65feb657269f566ffc235b2f65
BLAKE2b-256 857f8e1b80ab4804439ca1dfcfa4c253200a09c599c5ba6857bba4c5f98cd15a

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 25672d855003655bc0e940afaa6d1dd8f50575682c04d707d6040a28b7ea2fb0
MD5 a6e7f69cfa999b75117dce25c0230a2d
BLAKE2b-256 7beec8ecaf2adf2d4b82baab09262bb9e900b346d880e573d7f3d5196b703259

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fcad4e097c7bc2dc3ad78afd61550184583e4a044eaca916338d230d01d7796e
MD5 f7e7806a8e8f9efd75c8c396d25d12a4
BLAKE2b-256 de92be44bc07dffd2bf2c1a43dbb5e3b2dabb8451e3f274d7e75a31c0035404a

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 2bfbaf2273050f116f411f04e4b026fee6f2f742e92c175e99ac3af16fe8c962
MD5 60676855c222b4a281e98a01a2566940
BLAKE2b-256 96b3938ab659984f8c060d10f7bb7194856259e0f72f812c6c36595dec7ef34c

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce1e559aac30f4bb17b7efc3e2298279ee63ed64f21b20071b20aeb047b6c9d1
MD5 9ae477e450ce3bdbf669dd4942ae1860
BLAKE2b-256 2d4f6880858327c29a2af494b48353053f9822b6ce07767a2bac31423b309e9f

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240819-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240819-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d274f740a7f4854d25cdf6d183932bf48b26f3f92c8fa9db2592aac12405c665
MD5 36f9f4a4a5025e02512d36bec8f53d2e
BLAKE2b-256 be9349a046ba018a00a44ea21085c34eefc7828a0902eeb07ca77562a309d1a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page