Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically.

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosEcosystemQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

Aim's mission is to democratize AI dev tools 🎯


Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress
  • Logging and configurable notifications
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view
  • Runs grouping with tags and experiments

🎬 Demos

Check out live Aim demos NOW to see it in action.

Machine translation experiments lightweight-GAN experiments
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experiments Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflow Aim-spaCy
aimlflow Aim-spaCy
Exploring MLflow experiments with a powerful UI an Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

Migrate from other tools

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

Integrate Aim into an existing project

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

Query runs programmatically via SDK

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
Set up a centralized tracking server

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

Deploy Aim on kubernetes

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

TensorBoard vs Aim

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.
MLflow vs Aim

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.
Weights and Biases vs Aim

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

🛣️ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

  • Aim SDK low-level interface
  • Dashboards – customizable layouts with embedded explorers
  • Ergonomic UI kit
  • Text Explorer
Next-up

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Distributions Explorer

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI commands
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences
  • Cloud storage support – store runs blob(e.g. images) data on the cloud
  • Artifact storage – store files, model checkpoints, and beyond

Integrations

  • ML Frameworks:
    • Shortlist: scikit-learn
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
Done
  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)
  • Integration with fast.ai (Start: Aug 22 2022, Shipped: Oct 6 2022)
  • Integration with MXNet (Start: Sep 20 2022, Shipped: Oct 6 2022)
  • Project overview page (Start: Sep 1 2022, Shipped: Oct 6 2022)
  • Remote tracking server scaling (Start: Sep 11 2022, Shipped: Nov 26 2022)
  • Integration with PaddlePaddle (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Integration with Optuna (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Audios Explorer (Start: Oct 30 2022, Shipped: Nov 26 2022)
  • Experiment page (Start: Nov 9 2022, Shipped: Nov 26 2022)
  • HuggingFace datasets (Start: Dec 29 2022, Feb 3 2023)

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.25.0.dev20240826.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

aim-3.25.0.dev20240826-cp312-cp312-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240826-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aim-3.25.0.dev20240826-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aim-3.25.0.dev20240826-cp311-cp311-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240826-cp311-cp311-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240826-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240826-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-3.25.0.dev20240826-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-3.25.0.dev20240826-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240826-cp310-cp310-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240826-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240826-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.25.0.dev20240826-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.25.0.dev20240826-cp39-cp39-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240826-cp39-cp39-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240826-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240826-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.25.0.dev20240826-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-3.25.0.dev20240826-cp38-cp38-manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240826-cp38-cp38-manylinux_2_24_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240826-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240826-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.25.0.dev20240826-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.25.0.dev20240826-cp37-cp37m-manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240826-cp37-cp37m-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240826-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240826-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-3.25.0.dev20240826.tar.gz.

File metadata

  • Download URL: aim-3.25.0.dev20240826.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.25.0.dev20240826.tar.gz
Algorithm Hash digest
SHA256 372862d6547cb947406d24d8555f262b0c643cbf7366e0767506026c60e2e9b0
MD5 88896fa588812c15a29a19807b2aa9c5
BLAKE2b-256 61679eda5e142188bec29a78ab354610e4c3560c99e6572182afad001ba72bcd

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0104ca3136001b1e7d8577d83b599e446b16f525be11f4f7232a84ef6bcbc647
MD5 5dc3b8ccc28556d9242229788ef7d97c
BLAKE2b-256 e94ec1458b7e0e3f785662a544b2afa57143b01358b1f4f31bce3c99cba181ef

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bb8183cd2f58fe95ba0c829c455517ccca559285f7aec4e82d384809d6dc3aae
MD5 7e93c26e36ef99c3302a69cbdf8db862
BLAKE2b-256 a872d5ea07d1175a5fb65fa48f8546577e6feb217aec389713a849d0bcf22db7

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2f3081d98a29248354bc1c2986a00faa729caa68b5a4ea1093da622799c921df
MD5 2e6c6fb8abee2da8c331f62ec18d13a0
BLAKE2b-256 ba041215deb3d3eb2a6567f79793cb28f1dfc8ce157f8bd3bd9fac80bca1edd3

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8c57a7e9fa5b04d8beea1c0b441ff70ae886a808f74d147cd7fb012d4b472262
MD5 66e2e394b9d478995119dc4f895a1f7a
BLAKE2b-256 115fc41fe96bf2490792455020340c92284185fd67744d6e676f736808632792

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 fbab89e8215e2d0a4fc3c20cf9b4860f3c4f0ddd0037f02273e52a4c0660f504
MD5 a496199109f59a76d6730958623db52d
BLAKE2b-256 8a25a6a7f01793c61cf9def3a80479ae2c7de82723210521d9859ac4d335347e

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2970661c459696ad4c1156ca7aa3748249a7c68e75ad5bbbb32bf59ad1c0ae75
MD5 8ade6fc8ee0fba5496bbef9816701a5d
BLAKE2b-256 ca2e4a92bfdfc93eca972800b7cd10960da6e7eeafaa5c1fae08f25522c50e52

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a00b6f8102ac8bc893992518d4985f7777d1bea7ef17952232c00cec40f1287e
MD5 5d4160780de6001b319fce4ee6c94454
BLAKE2b-256 a85da48c3fac8149acc6882b4cdb0a0455e04cf86f8cf7f97c06620cd57baab1

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0771a82fe316dd7d98c615ced621e47aab63dd3eb6fcfc4a9029473c0b95bfd9
MD5 7a51f38c12dba76cd4ee8ead1ab01357
BLAKE2b-256 ab16ea070ff78ece4880638a2a5f84f80dd76cf39753fab494f7a5046a784254

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 366250d2d96432b92b3a1ef428537e13d5d94012be84255dfa6c6d48b4b63178
MD5 c74d55c5a80c398e0653f5c854389455
BLAKE2b-256 981d319f25aedcf7499eb81615bec5eb1d655b6ef8a49936df3e3c0abdaf4191

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 4f935840c6af73dac67a02a701cbbfcfe56d130d7a4eb3902229171a5f660591
MD5 9be5b9d9f280dadc18610827a56a0d68
BLAKE2b-256 b31e51749695c54d57fafa756fb15ffbc54bec74276b2e49d82b4cb67cfbb609

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6333b6b89c85c9a3d1092cab65b749fd53b6dfaa1a4b1f5acdb5ff542fff3b39
MD5 a25f849c017ecbcf920f8ca5c6179dc8
BLAKE2b-256 a58ad6683c633c881d81ac5e453a0635dff3ecc3608af935a3579f0354ea5f9b

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9c9a96193f3c214ae2c56f1963cc98cba215139544748abdc6a81ad547019274
MD5 71d8ea8595c4400cdbe9da3a1ea63c9a
BLAKE2b-256 728dfd1455240e19393fc55bb598e8e49ac4e4038fa629fc71142992345cd2e5

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a397467424cd0f69f2e5f14e5a4be72881a3c564468eac8b16a082d8b99916b8
MD5 6639a876ec01c28a7da0eb59b38afffe
BLAKE2b-256 fb55a228804ddddbc7398dc30a5d3aa26d68b89802c114bdcc15b46c52ca5455

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c61e5da5a215125f70d0454b12d9edb316275e2a31e728feb35876732f1f7272
MD5 b9917cd2ff4814cca6f5ae414ef97753
BLAKE2b-256 8ac99e944094af7a5aeb1aec976482ec61ab4b6010fdb3a5826f6e02ba695bb5

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 e052417857fdd0d8d9d7dd340c0236c3a8f26112f729f047cd3ed0fce69d56eb
MD5 221519bcc46f4959a33c5eec7b04b13c
BLAKE2b-256 a60d67cdcf7a9ce633ac8af8671e5a4aad3264a2bb0da266f79174f493365f24

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 61d434d6a4ade7cc1a200153419a131f1cb3abef93cbc107006b8b3347e416a4
MD5 e85fea289452b6172c11a2c1c8dac61c
BLAKE2b-256 87fae5cbdc0b800e59546d2f218da2944974dba78ecca27d33f1e06504cc5ce2

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d55c40ac64f7ff4317acfd33972d1861ea669f4e637dcca49d3e6a1d20b718e6
MD5 0ebacdc6d9e39d24e5f8bc7a10e3c7e3
BLAKE2b-256 a10da9d7362e15314c2059fd9dbeb24a46c986bab21223b59e1429482cfbd56e

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 eb0e49c9a1954e7bdafef3e71f4db8f8d54b8f9961a727fd544aa9f73782e8b4
MD5 133cd8b78fdc806afb3c3b7c696d0b79
BLAKE2b-256 441ba246715cebbd5088c47f135495467f331b67c89646ef29a9d2abe3808b25

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 36b6d78422dae81be48fd24ab63d6d520ce71087b5bd6c31c9c2ca7d98f5fbb6
MD5 39723112cc2ddc0bb9b757fa01c7e34d
BLAKE2b-256 1587c34d7498bd1bf15ab0c37a5da4274cad2f1495dcea12d94b54da9b8b4b94

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 dfdf7324a6d481d66728192a877a1a9b46c41270ea0e295e115fce63959c4028
MD5 3231172da6958afc26a09d01aba6dd22
BLAKE2b-256 04c1a9b605b13eb8989d25d5c023dcf7e00cea1d827d2554f7019eac30464b6b

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2421f0df54b3b18526cb38a5f54b393d905367ce8411235c7c2b167c2440f1dd
MD5 5bc636af152609c6333c827e3542178c
BLAKE2b-256 08118e048eb20fa065dcfc2d80a9a6b143554a6a74d6cc08a0837a45f3bb4fe7

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 be9ca9124101c51b38efbe3fd2173e1f4abf0e6f835091670b1b9d8fc020fcd9
MD5 7c1db2b915c69034c2996ec3cfeb039b
BLAKE2b-256 b5db564f66a2f3b523430c120cf2d0e9dca9ed85d17ade8be404995806e51ccb

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 83e997acdf86691f88a2ddb8ef52c2d95922fa94d4ef55e546d695d474cf310e
MD5 6734f96f4dfcafb8f3ad9de94cef3b2a
BLAKE2b-256 af58edd91babb3bbe4cb0e6e5fb42281c0468f7439580faed3731a877afc8a21

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5193825d93bd5d73ff799a0ef16401bd47dd45fbd33cb57bd38c36af058d78f4
MD5 2c82624dcb1d19fd33e74489f754be8c
BLAKE2b-256 542a9059fd79fb2d632bc13f65c7f2519aeb19d6c659a841d05e72330a34c109

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 a35e5fdddd17f7352c697f90481ed1bbed0ae1102447e68cdf35f1bf0b9f6cba
MD5 b76fcd6874fb99b3c42687b74595fea4
BLAKE2b-256 e98b159b4f1d34486df7adad31d73ba5cdbba921ed6fb980eb27d957f734b910

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35999caf5e9128cfcde12491e7d40a7d22a610e533805d8fc480e4252e58d43d
MD5 2793e1c52329ffb0f65f657c15ae8ada
BLAKE2b-256 172ec592e069399b833a8eca41d7a6621698795f6c70f367ce022e810ba3ff6c

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240826-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240826-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 539343f13848741d7b91366d0c5dae2c445c6afde249e6bf63ce0b3916ce1675
MD5 031bb28594fef9107260f8808eaf34c2
BLAKE2b-256 4f0d742a995db9c01eb4006a8e7ae5135b45a691690fb4edb71812e484afcd21

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page